INCOMING TRANSMISSION

LATEST UPDATES
1. 模型介绍 Logistic Regression 虽然被称为回归,但其实际上是分类模型,并常用于二分类。Logistic Regression 因其简单、可并行化、可解释强深受工业界喜爱。 Logistic 回归的本质是:假设数据服从这个分布,然后使用极大似然估计做参数的估计。 1.1 Logistic 分布 Logistic 分布是一种连续型的概率分布,其分布函数和密度函数分别为: [公式] 其中, [Math] 表示位置参数, [Math] 为形状参数。我们可以看下其图像特征: Logistic 分布是由其位置和尺度参数定义的连续分布。Logistic 分布的形状与正态分布的形状相似,但是 Logistic 分布的尾部更长,所以我们可以使用 Logistic 分布来建模比正态分布具...
Kernel Logistic Regression 介绍如何将Kernel Trick引入到Logistic Regression,以及LR与SVM的结合 SVM与正则化 首先回顾SoftMargin SVM的原始问题: [公式] 其中 ξ_n 是训练数据违反边界的多少,没有违反的话, ξ_n=0 ,反之 ξ_n0 ,换句话说,目标函数的第二项就可以表示模型的损失。现在换一种方式来写,将二者结合起来: ξ_n=max(1−y_n(w^Tz^n+b),0) ,这一个等式就代表了上面的约束条件,这样上述问题,就与下面的无约束问题等价 [公式] 这种形式与之前的L2 正则项很类似: [公式] 在L2中,通过最小化 E_{in} 的同时控制 w 的大小,防止模型过度复杂。从正则化的角度来看的话,S...
什么是自组织映射? 一个特别有趣的无监督系统是基于竞争性学习,其中输出神经元之间竞争激活,结果是在任意时间只有一个神经元被激活。这个激活的神经元被称为胜者神经元(winnertakesall neuron)。这种竞争可以通过在神经元之间具有横向抑制连接(负反馈路径)来实现。其结果是神经元被迫对自身进行重新组合,这样的网络我们称之为自组织映射(Self Organizing Map,SOM)。 拓扑映射 神经生物学研究表明,不同的感觉输入(运动,视觉,听觉等)以有序的方式映射到大脑皮层的相应区域。 这种映射我们称之为拓扑映射,它具有两个重要特性: 在表示或处理的每个阶段,每一条传入的信息都保存在适当的上下文(相邻节点)中 处理密切相关的信息的神经元之间保持密切,以便它们可以通过短突触连接进行交...
正则化 正则化是一个通用的算法和思想,所以会产生过拟合现象的算法都可以使用正则化来避免过拟合。 在经验风险最小化的基础上(也就是训练误差最小化),尽可能采用简单的模型,可以有效提高泛化预测精度。如果模型过于复杂,变量值稍微有点变动,就会引起预测精度问题。正则化之所以有效,就是因为其降低了特征的权重,使得模型更为简单。 正则化一般会采用 L1 范式或者 L2 范式,其形式分别为 [Math] 和 [Math] 。 L1正则化 LASSO 回归,相当于为模型添加了这样一个先验知识: w 服从零均值拉普拉斯分布。 首先看看拉普拉斯分布长什么样子: [公式] 由于引入了先验知识,所以似然函数这样写: [公式] 取 log 再取负,得到目标函数: [公式] 等价于原始损失函数的后面加上了 L1 正则,...
问题定义 多元二次多项式,维度为 n ,那么可以用以下公式描述该函数: [公式] 其中 a_{i,j} 为二次项系数,共有 n^2 项, 1≤i,j≤n ,且所有的 a 不全为0,即 ∃a_{i,j}≠0 ; b_k 为一次项系数,共 n 项, 1≤k≤n ; c 为常数项。 记 f(x)=[x_1,x_2,...,x_n]^T ,则上述函数可以写作二次型的形式: 转化过程中A,b满足: A 为n阶对称方阵, A_{i,j}=a_{i,j} 因为 ∃a_{i,j}≠0 ,A不为零矩阵 b_i=b_i 为了后续计算简便,我们将二次型稍作改动: [公式] 我们的目标就是寻找该函数的极值点的坐标,我们把该目标称为 x^∗ . 其中,表示 A : [公式] 将 A 与多项式系数对应: [公式] [公...
1. 基本概念 方向导数:是一个数;反映的是f(x,y)在P0点沿方向v的变化率。 偏导数:是多个数(每元有一个);是指多元函数沿坐标轴方向的方向导数,因此二元函数就有两个偏导数。 偏导函数:是一个函数;是一个关于点的偏导数的函数。 梯度:是一个向量;每个元素为函数对一元变量的偏导数;它既有大小(其大小为最大方向导数),也有方向。 2. 方向导数 反映的是f(x,y)在P0点沿方向v的变化率。 例子如下: 方向导数计算公式 偏导数 二元函数偏导数的几何意义 偏导函数 偏导数与偏导函数的关系: 偏导数是偏导函数在指定点的函数值,因此在求偏导数时,也可先求出偏导函数,然后再将点代入偏导函数,从而求出函数在此点的偏导数。 3. 全微分 4. 梯度 梯度是一个向量;既有大小,也有方向。 几何意义 函...
一、泊松分布 日常生活中,大量事件是有固定频率的。 某医院平均每小时出生3个婴儿 某公司平均每10分钟接到1个电话 某超市平均每天销售4包xx牌奶粉 某网站平均每分钟有2次访问 它们的特点就是,我们可以预估这些事件的总数,但是没法知道具体的发生时间。已知平均每小时出生3个婴儿,请问下一个小时,会出生几个? 有可能一下子出生6个,也有可能一个都不出生。这是我们没法知道的。 泊松分布就是描述某段时间内,事件具体的发生概率。 上面就是泊松分布的公式。等号的左边,P 表示概率,N表示某种函数关系,t 表示时间,n 表示数量,1小时内出生3个婴儿的概率,就表示为 P(N(1) = 3) 。等号的右边,参数λ是单位时间(或单位面积)内随机事件的平均发生率。 接下来两个小时,一个婴儿都不出生的概率是0.2...
Learning to rank 排序学习是推荐、搜索、广告的核心方法。排序结果的好坏很大程度影响用户体验、广告收入等。排序学习可以理解为机器学习中用户排序的方法,这里首先推荐一本微软亚洲研究院刘铁岩老师关于LTR的著作,Learning to Rank for Information Retrieval,书中对排序学习的各种方法做了很好的阐述和总结。我这里是一个超级精简版。 排序学习是一个有监督的机器学习过程,对每一个给定的查询-文档对,抽取特征,通过日志挖掘或者人工标注的方法获得真实数据标注。然后通过排序模型,使得输入能够和实际的数据相似。常用的排序学习分为三种类型:PointWise,PairWise和ListWise。 PointWise 单文档方法的处理对象是单独的一篇文档,将文档...
1. 概述 新闻推荐系统从海量新闻中推荐出你感兴趣的新闻,百度从海量的搜索结果中找到最优的结果,短视频推荐出你每天都停不下来的视频流,这些里面都包含ANN方法。当然,在现在的检索系统中,往往是多分支并行触发的效果,虽然DNN 大行其道,但是 ANN 一直不可或缺。 通用理解上,ANN(Approximate Nearest Neighbor)是在向量空间中搜索向量最近邻的优化问题。目前业界常用nmslib、Annoy算法作为实现。在实际的工程应用中,ANN是作为一种向量检索技术应用,用于解决长尾Query召回问题。将一个资讯的ANN 召回系统抽象出来大概是下面的样子。 Ann(approximate nearest neighbor)是指一系列用于解决最近邻查找问题的近似算法。最近邻查找问题...
一句话总结 正排索引:一个未经处理的数据库中,一般是以文档ID作为索引,以文档内容作为记录。 倒排索引:Inverted index,指的是将单词或记录作为索引,将文档ID作为记录,这样便可以方便地通过单词或记录查找到其所在的文档。 倒排索引创建索引的流程 形成文档列表 首先对原始文档数据进行编号(DocID),形成列表,就是一个文档列表。 创建倒排索引列表 对文档中数据进行分词,得到词条。对词条进行编号,以词条创建索引。保存包含这些词条的文档的编号信息。 搜索的过程 当用户输入任意的词条时,首先对用户输入的数据进行分词,得到用户要搜索的所有词条,然后拿着这些词条去倒排索引列表中进行匹配。找到这些词条就能找到包含这些词条的所有文档的编号。 然后根据这些编号去文档列表中找到文档 正排和倒排 正...
1.倒排索引召回 1)召回模型有三种: 1.基于行为的召回:根据用户的购买行为推荐相关/相似的商品;(长期行为和实时行为) 2.基于用户偏好的召回:用户画像和多屏互通(移动端到PC端); 3.基于地域的召回; 4.基于搜索词的召回(倒排索引); 2)倒排索引 倒排是指由属性值来确定记录的位置。 倒排索引由单词词典和倒排文件组成, 单词词典是由文档集合中出现过的所有单词构成的字符串集合,单词词典内每条索引项记载单词本身的一些信息以及指向“倒排列表”的指针。 倒排文件记录所有单词的倒排列表顺序。 好处是在找含有该词的文件时,不需要扫描所有文件,而只需要在单词词典中找到该词,然后找到该词对应的倒排列表即可。 Lucene倒排步骤: 1.取得关键词; 2.建立倒排索引;lucene将上面三列分别作为...