INCOMING TRANSMISSION

LATEST UPDATES
RNN 概述 在前面讲到的DNN和CNN中,训练样本的输入和输出是比较的确定的。但是有一类问题DNN和CNN不好解决,就是训练样本输入是连续的序列,且序列的长短不一,比如基于时间的序列:一段段连续的语音,一段段连续的手写文字。这些序列比较长,且长度不一,比较难直接的拆分成一个个独立的样本来通过DNN/CNN进行训练。 而对于这类问题,RNN则比较的擅长。那么RNN是怎么做到的呢?RNN假设我们的样本是基于序列的。比如是从序列索引1到序列索引 τ 。对于这其中的任意序列索引号 t ,它对应的输入是对应的样本序列中的 x(t) 。而模型在序列索引号 t 位置的隐藏状态 h(t) ,则由 x(t) 和在 t−1 位置的隐藏状态 h(t−1) 共同决定。在任意序列索引号 t ,我们也有对应的模型预测...
什么是Word2Vec和Embeddings? Word2Vec是从大量文本语料中以无监督的方式学习语义知识的一种模型,它被大量地用在自然语言处理(NLP)中。那么它是如何帮助我们做自然语言处理呢?Word2Vec其实就是通过学习文本来用词向量的方式表征词的语义信息,即通过一个嵌入空间使得语义上相似的单词在该空间内距离很近。Embedding其实就是一个映射,将单词从原先所属的空间映射到新的多维空间中,也就是把原先词所在空间嵌入到一个新的空间中去。 我们从直观角度上来理解一下,cat这个单词和kitten属于语义上很相近的词,而dog和kitten则不是那么相近,iphone这个单词和kitten的语义就差的更远了。通过对词汇表中单词进行这种数值表示方式的学习(也就是将单词转换为词向量),能...
Tokenizer 诸如GPT3/4以及LlaMA/LlaMA2大语言模型都采用了token的作为模型的输入输出,其输入是文本,然后将文本转为token(正整数),然后从一串token(对应于文本)预测下一个token。 进入OpenAI官网提供的tokenizer可以看到GPT3tokenizer采用的方法。这里以Hello World为例说明。 总共30个token,英文单词一般会用单独的token表示,大小写也会区分不同的token,如Hello和hello,另外有一些由空格前导的单词也会单独编码,这会使得编码整个句子效率更高(这将省去每个空格的编码),对于中文token化,会使用两到三个ID(正整数表示),比如上面的中英文的!。 在英语等空白隔开的语言中,文本被预标记化,通常使用不跨...
简介 EfficientNet源自Google Brain的论文EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. 从标题也可以看出,这篇论文最主要的创新点是Model Scaling. 论文提出了compound scaling,混合缩放,把网络缩放的三种方式:深度、宽度、分辨率,组合起来按照一定规则缩放,从而提高网络的效果。EfficientNet在网络变大时效果提升明显,把精度上限进一步提升,成为了当前最强网络。EfficientNetB7在ImageNet上获得了最先进的 84.4%的top1精度 和 97.1%的top5精度,比之前最好的卷积网络(GPipe, Top1: 84.3%, ...
💡 轻量级网络系列 Introduction Inception 在最初的版本 Inception/GoogleNet,其核心思想是利用多尺寸卷积核去观察输入数据。举个栗子,我们看某个景象由于远近不同,同一个物体的大小也会有所不同,那么不同尺度的卷积核观察的特征就会有这样的效果。于是就有了如下的网络结构图: 于是我们的网络就变胖了,通过增加网络的宽度,提高了对于不同尺度的适应程度。但这样的话,计算量有点大了。 Pointwise Conv 为了减少在上面结构的参数量并降低计算量,于是在 Inception V1 的基础版本上加上了 1x1 卷积核,这就形成了 Inception V1 的最终网络结构,如下图。 这个 1x1 卷积就是 Pointwise Convolution,简称 PW。利...
如果把 近几年对比学习在视觉领域有代表性的工作做一下总结,那么对比学习的发展历程大概可以分为四个阶段: 百花齐放 这个阶段代表性工作有InstDisc(instance discrimination,)、CPC、CMC等。在这个阶段中,方法、模型、目标函数、代理任务都还没有统一,所以说是一个百花齐放的时代 CV双雄 代表作有MoCo v1、SimCLR v1、MoCo v2、SimCLR v2;CPC、CMC的延伸工作、SwAV等。这个阶段发展非常迅速,有的工作间隔甚至不到一个月,ImageNet上的成绩基本上每个月都在被刷新。 不用负样本 BYOL及其改进工作、SimSiam(CNN在对比学习中的总结性工作) transformer MoCo v3、DINO。这个阶段,无论是对比学习还是最...
SelfSupervised Learning,又称为自监督学习,我们知道一般机器学习分为有监督学习,无监督学习和强化学习。 而 SelfSupervised Learning 是无监督学习里面的一种,主要是希望能够学习到一种通用的特征表达用于下游任务 (Downstream Tasks)。 其主要的方式就是通过自己监督自己。作为代表作的 kaiming 的 MoCo 引发一波热议, Yann Lecun也在 AAAI 上讲 SelfSupervised Learning 是未来的大势所趋。所以在这个系列中,我会系统地解读 SelfSupervised Learning 的经典工作。 总结下 SelfSupervised Learning 的方法,用 4 个英文单词概括一下就是: Unsup...
总结下 SelfSupervised Learning 的方法,用 4 个英文单词概括一下就是: Unsupervised Pretrain, Supervised Finetune. 在预训练阶段我们使用无标签的数据集 (unlabeled data),因为有标签的数据集很贵,打标签得要多少人工劳力去标注,那成本是相当高的,所以这玩意太贵。相反,无标签的数据集网上随便到处爬,它便宜。在训练模型参数的时候,我们不追求把这个参数用带标签数据从初始化的一张白纸给一步训练到位,原因就是数据集太贵。于是 SelfSupervised Learning 就想先把参数从 一张白纸 训练到 初步成型,再从 初步成型 训练到 完全成型。注意这是2个阶段。这个训练到初步成型的东西,我们把它叫做 Visual ...
相关内容 自监督学习(Selfsupervised):属于无监督学习,其核心是自动为数据打标签(伪标签或其他角度的可信标签,包括图像的旋转、分块等等),通过让网络按照既定的规则,对数据打出正确的标签来更好地进行特征表示,从而应用于各种下游任务。 互信息(Mutual Information):表示两个变量 X 和 Y 之间的关系,定义为: 噪声对抗估计(Noise Contrastive Estimation, NCE):在NLP任务中一种降低计算复杂度的方法,将语言模型估计问题简化为一个二分类问题。 Introduction 无监督学习一个重要的问题就是学习有用的 representation,本文的目的就是训练一个 representation learning 函数(即编码器encod...
补充知识 表示学习(Representation Learning):学习数据的表征,以便在构建分类器或其他预测器时更容易提取有用的信息,无监督学习也属于表示学习。 互信息(Mutual Information):表示两个变量 X 和 Y 之间的关系,定义为: 对比损失(contrastive loss):计算成对样本的匹配程度,主要用于降维中。计算公式为: 噪声对抗估计(Noise Contrastive Estimation, NCE):在NLP任务中一种降低计算复杂度的方法,将语言模型估计问题简化为一个二分类问题。 负采样(Negative Sampling, NEG):表示负采样,是NCE的一个简化版本,目的是提高训练速度,改善所得词向量的质量。采用了相对简单的随机负采样,本文中选择...
从 NLP 入手 背景 NCE,也就是 Noise Contrastive Noise(噪声对比估计), 在 “Noisecontrastive estimation: A new estimation principle for unnormalized statistical models“ 这篇论文中被提出,但是这篇论文的阐述的不太便于理解,并且论文中估计的是概率密度函数(pdf, probability density function)。而 NLP 中的 word 或 vision 中的 pixel 都是离散的,且我们感兴趣的是的概率质量函数(pmf, probability mass function),这篇 “A fast and simple algorithm for tr...
DropBlock 论文题目:DropBlock: A regularization method for convolutional networks 论文地址:https://arxiv.org/abs/1810.12890 由于dropBlock其实是dropout在卷积层上的推广,故很有必须先说明下dropout操作。 dropout,训练阶段在每个minibatch中,依概率P随机屏蔽掉一部分神经元,只训练保留下来的神经元对应的参数,屏蔽掉的神经元梯度为0,参数不参数与更新。而测试阶段则又让所有神经元都参与计算。 dropout操作流程:参数是丢弃率p 1)在训练阶段,每个minibatch中,按照伯努利概率分布(采样得到0或者1的向量,0表示丢弃)随机的丢弃一部分神经元(即神经元...