3D基础
深度相机
“工欲善其事必先利其器‘’我们先从能够获取RGBD数据的相机开始谈起。首先我们来看一看其分类。
根据其工作原理主要分为三类:
- 双目方案
- 结构光
- TOF方案
关键技术参数:
1.检测范围;2.检测精度;3.检测角度;4.帧率;5.模块大小;6.功耗 目前的主流摄像头在检测范围、检测精度和检测角度等都相差不大,主要区别在于: 1、结构光方案优势在于技术成熟,深度图像分辨率可以做得比较高,但容易受光照影响,室外环境基本不能使用; 2、TOF方案抗干扰性能好,视角更宽,不足是深度图像分辨率较低,做一些简单避障和视觉导航可以用,不适合高精度场合。受环境影响小,传感器芯片并不成熟,成本很高,实现量产困难。 3、双目方案,成本相对前面两种方案最低,但是深度信息依赖纯软件算法得出,此算法复杂度高,难度很大,处理芯片需要很高的计算性能,同时它也继承了普通RGB摄像头的缺点:在昏暗环境下以及特征不明显的情况下并不适用。
小结
- 双目方案:最大的问题在于实现算法需要很高的计算资源,导致实时性很差,而且基本跟分辨率,检测精度挂钩。也就是说,分辨率越高,要求精度越高,则计算越复杂,同时,纯双目方案受光照,物体纹理性质影响。
- 结构光方案:目的就是为了解决双目中匹配算法的复杂度和鲁棒性问题而提出,该方案解决了大多数环境下双目的上述问题。但是,在强光下,结构光核心技术激光散斑会被淹没。因此,不合适室外。同时,在长时间监控方面,激光发射设备容易坏,重新换设备后,需要重新标定
- TOF方案:传感器技术不是很成熟,因此,分辨率较低,成本高,但由于其原理与另外两种完全不同,实时性高,不需要额外增加计算资源,几乎无算法开发工作量,是未来。
相机标定
3D建模
3D Face model
人脸三维重建就是建立人脸的三维模型,它相对于二维人脸图像多了一个维度,在电影,游戏等领域应用广泛。目前获取人脸三维模型的方法主要包括三种,软件建模,仪器采集与基于图像的建模。
- 软件建模作为最早的三维建模手段,现在仍然是最广泛地在电影,动漫行业中应用。顶顶大名的3DMax就是典型代表
- 由于手工建模耗费大量的人力,三维成像仪器也得到了长期的研究和发展。基于结构光和激光仪器的三维成像仪是其中的典型代表,我们熟知的iphoneX中的人脸识别就是基于结构光进行三维人脸重建,正因如此才有iphonex中的三维人脸表情包。这些基于仪器采集的三维模型,精度可达毫米级,是物体的真实三维数据,也正好用来为基于图像的建模方法提供评价数据库。不过由于仪器的成本太高,一般的用户是用不上了。
- 基于图像的建模技术(image based modeling),顾名思义,是指通过若干幅二维图像,来恢复图像或场景的三维结构,这些年得到了广泛的研究。 基于人脸图像的三维重建方法非常多,常见的包括立体匹配,Structure From Motion(简称SfM),Shape from Shading(简称sfs),三维可变形人脸模型(3DMM)
RGB-D
深度估计
由RGB估计深度