INCOMING TRANSMISSION

LATEST UPDATES
Kernel Logistic Regression 介绍如何将Kernel Trick引入到Logistic Regression,以及LR与SVM的结合 SVM与正则化 首先回顾SoftMargin SVM的原始问题: [公式] 其中 ξ_n 是训练数据违反边界的多少,没有违反的话, ξ_n=0 ,反之 ξ_n0 ,换句话说,目标函数的第二项就可以表示模型的损失。现在换一种方式来写,将二者结合起来: ξ_n=max(1−y_n(w^Tz^n+b),0) ,这一个等式就代表了上面的约束条件,这样上述问题,就与下面的无约束问题等价 [公式] 这种形式与之前的L2 正则项很类似: [公式] 在L2中,通过最小化 E_{in} 的同时控制 w 的大小,防止模型过度复杂。从正则化的角度来看的话,S...
什么是自组织映射? 一个特别有趣的无监督系统是基于竞争性学习,其中输出神经元之间竞争激活,结果是在任意时间只有一个神经元被激活。这个激活的神经元被称为胜者神经元(winnertakesall neuron)。这种竞争可以通过在神经元之间具有横向抑制连接(负反馈路径)来实现。其结果是神经元被迫对自身进行重新组合,这样的网络我们称之为自组织映射(Self Organizing Map,SOM)。 拓扑映射 神经生物学研究表明,不同的感觉输入(运动,视觉,听觉等)以有序的方式映射到大脑皮层的相应区域。 这种映射我们称之为拓扑映射,它具有两个重要特性: 在表示或处理的每个阶段,每一条传入的信息都保存在适当的上下文(相邻节点)中 处理密切相关的信息的神经元之间保持密切,以便它们可以通过短突触连接进行交...
正则化 正则化是一个通用的算法和思想,所以会产生过拟合现象的算法都可以使用正则化来避免过拟合。 在经验风险最小化的基础上(也就是训练误差最小化),尽可能采用简单的模型,可以有效提高泛化预测精度。如果模型过于复杂,变量值稍微有点变动,就会引起预测精度问题。正则化之所以有效,就是因为其降低了特征的权重,使得模型更为简单。 正则化一般会采用 L1 范式或者 L2 范式,其形式分别为 [Math] 和 [Math] 。 L1正则化 LASSO 回归,相当于为模型添加了这样一个先验知识: w 服从零均值拉普拉斯分布。 首先看看拉普拉斯分布长什么样子: [公式] 由于引入了先验知识,所以似然函数这样写: [公式] 取 log 再取负,得到目标函数: [公式] 等价于原始损失函数的后面加上了 L1 正则,...
1 2