INCOMING TRANSMISSION

LATEST UPDATES
先要明确的知道,FCOS是一个基于FCN(全卷积网络用于目标检测)、一阶段(one stage)、anchor free、proposal free、参考语义分割思想 实现的逐像素目标检测的模型。 简要介绍下FCOS几个核心点: (1)FCOS方法借鉴了FCN的思想,对 feature map 上每个特征点做回归操作,预测四个值 , 分别代表特征点到Ground Truth Bounding box上、下、左、右边界的距离。 (2)特征点映射会原图后对应多个GT Bounding box,无法准确判断原图像素所属类别,因此模型引入 FPN 结构,利用不同的层来处理不同尺寸的目标框。 (3)远离目标中心点可能会产生劣质预测结果,为了增强中心点选取的准确性,模型引入了Centerness lay...
Deformable Convolution 在正式介绍这个工作之前很有必要先了解什么是 Deformable Convolution 。 Deformable Convolution 是MSRA的代季峰老师以及实习生在2017年提出的一种全新的卷积结构。这种方法将固定形状的卷积过程改造成了能适应物体形状的可变的卷积过程,从而使结构适应物体形变的能力更强。 传统的CNN只能靠一些简单的方法(比如max pooling)来适应物体的形变,如果形变的太厉害就无能为力了。因为CNN的卷积核的geometric structure是fixed的,也就是固定住的。卷积核总是在固定位置对输入特征特征进行采样。 为了改变这种情况专家们想了很多方法,最常见的有两种: 1. 使用大量的数据进行训练。比如用Im...
回顾 PPO [公式] 其中 (q, a) 是 数据集 [Math] 中采样的 questionanswer pair, [Math] 是重要性采样比的clip范围, [Math] 是时间步 t 的优势估计量. 给定 value function V 和 reward function R , [Math] 使用广义优势估计 (GAE) 来计算: [公式] 其中, [公式] GRPO 相比于 PPO, GRPO 去掉了value function 并以分组的方式估计优势。对于特定的问答对 (q, a), behavior policy [Math] 生成了一组 G 个 response \{o...
DropBlock 论文题目:DropBlock: A regularization method for convolutional networks 论文地址:https://arxiv.org/abs/1810.12890 由于dropBlock其实是dropout在卷积层上的推广,故很有必须先说明下dropout操作。 dropout,训练阶段在每个minibatch中,依概率P随机屏蔽掉一部分神经元,只训练保留下来的神经元对应的参数,屏蔽掉的神经元梯度为0,参数不参数与更新。而测试阶段则又让所有神经元都参与计算。 dropout操作流程:参数是丢弃率p 1)在训练阶段,每个minibatch中,按照伯努利概率分布(采样得到0或者1的向量,0表示丢弃)随机的丢弃一部分神经元(即神经元...
1 ... 5 6 7