INCOMING TRANSMISSION

LATEST UPDATES
根据一棵树的先序遍历和中序遍历,或者后序遍历和中序遍历序列,都可以唯一地确定一棵树。 树中的节点,分为度为0,1,2的结点。如果树中只有一个节点,那么可以唯一确定一棵树,即只有一个节点的树。 当树中结点个数大于等于2的情况,树中的叶子结点和它的父亲结点中,至少有一种存在如下的情况。(为方便起见,我们先从叶子节点入手) case 1: case2: case 3: A D F / \ / \ B C E G 即,叶子结点的父亲有两个孩子,只有左孩子,只有右孩子的情况。我们只需要证明,如果树存在这三种结构中的哪一种,可以唯一确定一棵树,什么情况下又不能唯一确定一棵树呢? 1. case 1: A / \ B C 前序遍历: ABC, 后序遍历: BCA 现在,我们根据遍历序列,看看能否得到另一种...
Deformable Convolution 在正式介绍这个工作之前很有必要先了解什么是 Deformable Convolution 。 Deformable Convolution 是MSRA的代季峰老师以及实习生在2017年提出的一种全新的卷积结构。这种方法将固定形状的卷积过程改造成了能适应物体形状的可变的卷积过程,从而使结构适应物体形变的能力更强。 传统的CNN只能靠一些简单的方法(比如max pooling)来适应物体的形变,如果形变的太厉害就无能为力了。因为CNN的卷积核的geometric structure是fixed的,也就是固定住的。卷积核总是在固定位置对输入特征特征进行采样。 为了改变这种情况专家们想了很多方法,最常见的有两种: 1. 使用大量的数据进行训练。比如用Im...
比起两年前,NLG任务已经得到了非常有效的发展,transformers模块的使用广泛程度也达到前所未有的程度。在模型推理预测时,一个核心的语句就是model.generate(),本文就来详细介绍一下generate方法是如何运作的。在生成的过程中,包含了诸多生成策略,本文将以最常用的beam search为例,尽可能详细地展开介绍。 随着各种LLM的出现,transformers中与generate相关的代码发生了一些变化,主要区别在于: generate的源码位置发生了改变; generate方法中,采用一个generation_config参数来管理生成相关的各种配置,并优化了逻辑,使得逻辑更加清晰。 1. generate的代码位置 在之前版本的transformers中(tran...
1 ... 4 5 6