INCOMING TRANSMISSION

LATEST UPDATES
题目 给定一个无序的数组,找出数组在排序之后,相邻元素之间最大的差值。 如果数组元素个数小于 2,则返回 0。 Example 1: [代码] 解题思路:如果进行排序,这里会超时。采用桶排序 排序算法 的思想,可以在线性时间解决。 1. 首先建立桶,每个桶中只需要存放这个桶中元素的最大值和最小值。 1. 我们期望将数组中的各个数等距离分配,也就是每个桶的长度相同,也就是对于所有桶来说,桶内最大值减去桶内最小值都是一样的。可以当成公式来记。 1. 确定桶的数量,最后的加一保证了数组的最大值也能分到一个桶。为什么需要这样规定桶的尺寸呢?因为这样可以让最大的间距的两个元素在两个不同的桶中。可以证明一下,因为我们用元素范围之差除以元素个数,所以桶的尺寸就是平均的元素间距,显然最大间距的两个元素不可能...
1. 可以重复选取 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的数字可以无限制重复被选取。 画出树状搜索图如下, 为了去除重复的情况, 我们需要按照某种顺序搜索,具体做法是:每一次搜索的时候,设置下一轮搜索的起点 [代码] 2. 不能被重复选取 与上面的区别在于 1. index每次不要重复搜索,而是去寻找下一个 1. 排除重复的元素 [代码]
网络整体介绍 ThunderNet的整体架构如下图所示。 ThunderNet使用320×320像素作为网络的输入分辨率。整体的网络结构分为两部分:Backbone部分和Detection部分。网络的骨干部分为SNet,SNet是基于ShuffleNetV2进行修改得到的。 网络的检测部分,利用了压缩的RPN网络,修改自LightHead RCNN网络用以提高效率。 并提出Context Enhancement Module整合局部和全局特征增强网络特征表达能力。 并提出Spatial Attention Module空间注意模块,引入来自RPN的前后景信息用以优化特征分布。 backbone 部分 1.输入分辨率 为了加快推理(前向操作)速度,作者使用320320大小的输入图像。需要注意的...
1. 检测任务的困难 图像分类算法,比如ResNeXt101 32 × 48d网络结构,在Imagenet数据集上的Top5准确率已经98%左右,Top1为85%。对于图像检测算法,最好的模型在coco数据集上的效果 AP_{50} 为62%,显然,总体上来看,准确率差了20个点左右,那么问题来了,为什么检测算法比识别算法的效果低这么多呢? 1.1 尺度差异 作者认为原因在于,检测任务中的目标存在较大的尺度变化(large scale variation)。作者统计了Imagenet和COCO数据集的特点,如下图, 其中,横坐标表示目标相对于原图的比例,纵坐标表示累计分布(cumulation distribution function)。显然,由图中可以看出,COCO数据集中50%的目标相...
FPN 1.结构区别 (a)图片金字塔生成特征金字塔:缩放图片比例 (b)通常的CNN网络结构 (c)多尺度特征融合的方式:像SSD(Single Shot Detector)就是采用这种多尺度特征融合的方式,没有上采样过程,即从网络不同层抽取不同尺度的特征做预测,这种方式不会增加额外的计算量。作者认为SSD算法中没有用到足够低层的特征(在SSD中,最低层的特征是VGG网络的conv4_3),而在作者看来足够低层的特征对于检测小物体是很有帮助的。 (d)FPN:这是本文要讲的网络,FPN主要解决的是物体检测中的多尺度问题,通过简单的网络连接改变,在基本不增加原有模型计算量的情况下,大幅度提升了小物体检测的性能。通过高层特征进行上采样和低层特征进行自顶向下的连接,而且每一层都会进行预测。 2....
一、传统的图像金字塔 最开始在深度学习方法流行之前,对于不同尺度的目标,大家普遍使用将原图构建出不同分辨率的图像金字塔,再对每层金字塔用固定输入分辨率的分类器在该层滑动来检测目标,以求在金字塔底部检测出小目标;或者只用一个原图,在原图上,用不同分辨率的分类器来检测目标,以求在比较小的窗口分类器中检测到小目标。经典的基于简单矩形特征(Haar)+级联Adaboost与Hog特征+SVM的DPM目标识别框架,均使用图像金字塔的方式处理多尺度目标,早期的CNN目标识别框架同样采用该方式,但对图像金字塔中的每一层分别进行CNN提取特征,耗时与内存消耗均无法满足需求。但该方式毫无疑问仍然是最优的。值得一提的是,其实目前大多数深度学习算法提交结果进行排名的时候,大多使用多尺度测试。同时类似于SNIP使用...
SoftNMS/DIoUNMS softnms参考: SoftNMS 可以看到,SoftNMS与传统NMS的区别在于对score分数调整的处理。如果是传统的NMS操作,那么当 B 中的 b_i 和 [Math] 的IoU值大于阈值 N_t ,那么就从 B 和 S 中去除该box;对于SoftNMS而言是先计算 [Math] 与 b_i 的IoU,然后IoU经过一个函数输出最后与 s_i 相乘最终得到box的分数。 其中 s_i 的score遵循IoU越大,分数越低的原则(IoU越大,越可能是背景),所以 s_i 定义如下: 考虑到上式是不连续的,并且当达到N_t的NMS阈值时会施加突然的惩罚, 如果惩罚函数是连续的,那将是理想的,否则它可能导致检测结果的排序列表的突然改变(集合D中的scor...
SNIPER的关键是减少了SNIP的计算量。SNIP借鉴了multiscale training的思想进行训练,multiscale training是用图像金字塔作为模型的输入,这种做法虽然能够提高模型效果,但是计算量的增加也非常明显,因为模型需要处理每个scale图像的每个像素,而SNIPER(Scale Normalization for Image Pyramids with Efficient Resampling)算法以适当的比例处理ground truth(称为chips)周围的上下文区域,在训练期间每个图像生成的chips的数量会根据场景复杂度而自适应地变化,由于SNIPER在采样后的低分辨率的chips上运行,故其可以在训练期间收益于Batch Normalization,...
总体流程 RPN RPN在Extractor输出的feature maps的基础之上,先增加了一个3x3卷积,然后利用两个1x1的卷积分别进行二分类(是否为正样本)和位置回归。进行分类的卷积核通道数为9×2(9个anchor,每个anchor二分类,使用交叉熵损失),进行回归的卷积核通道数为9×4(9个anchor,每个anchor有4个位置参数)。 接下来RPN做的事情就是利用(AnchorTargetCreator)将20000多个候选的anchor选出2000个proposal并采样256个positive 进行分类和回归位置loss计算。具体过程如下: proposal 前向过程中会做 NMS : 1. 对所有 anchors 做前背景分类和bbox regression回归(lea...
一、泊松分布 日常生活中,大量事件是有固定频率的。 某医院平均每小时出生3个婴儿 某公司平均每10分钟接到1个电话 某超市平均每天销售4包xx牌奶粉 某网站平均每分钟有2次访问 它们的特点就是,我们可以预估这些事件的总数,但是没法知道具体的发生时间。已知平均每小时出生3个婴儿,请问下一个小时,会出生几个? 有可能一下子出生6个,也有可能一个都不出生。这是我们没法知道的。 泊松分布就是描述某段时间内,事件具体的发生概率。 [Formula] 上面就是泊松分布的公式。等号的左边, P 表示概率, N 表示某种函数关系, t 表示时间, n 表示数量,1小时内出生3个婴儿的概率,就表示为 P(N(1...
前言 首先看论文题目。Swin Transformer: Hierarchical Vision Transformer using Shifted Windows。即:Swin Transformer是一个用了移动窗口的层级式Vision Transformer 所以Swin来自于 Shifted Windows , 它能够使Vision Transformer像卷积神经网络一样,做层级式的特征提取,这样提取出来的特征具有多尺度的概念 ,这也是 Swin Transformer这篇论文的主要贡献。 标准的Transformer直接用到视觉领域有一些挑战,即: 多尺度问题:比如一张图片里的各种物体尺度不统一,NLP中没有这个问题; 分辨率太大:如果将图片的每一个像素值当作一个token直接输...