INCOMING TRANSMISSION

LATEST UPDATES
简介 模型结构 32K词表大小 2T训练数据 4K上下文长度 模型种类:7B、13B、70B(用了GQA) LLaMA 2Chat:三个版本——7B 13B 70B 同时 Meta 还发布了 LLaMA 2CHAT,其是基于 LLAMA 2 针对对话场景微调的版本,同样 7B、13B 和 70B 参数三个版本,具体的训练方法与ChatGPT类似 1. 先是监督微调LLaMA2得到SFT版本 (接受了成千上万个人类标注数据的训练,本质是问题答案对 ) 1. 然后使用人类反馈强化学习(RLHF)进行迭代优化 先训练一个奖励模型 然后在奖励模型/优势函数的指引下,通过拒绝抽样(rejection sampling)和近端策略优化(PPO)的方法迭代模型的生成策略 LLAMA 2 的性能表现更加接近...
概述 Kimi k1.5采用了一种简化而有效的强化学习框架,其核心在于长上下文扩展和改进的策略优化方法,而不依赖于更复杂的技术如蒙特卡洛树搜索、价值函数和过程奖励模型。 问题设定 给定训练数据集 D = \{(x_i, y^_i)\}_{i=1}^n ,其中包含问题 x_i 和对应的真实答案 y^_i ,目标是训练一个策略模型 [Math] 来准确解决测试问题。在复杂推理场景中,思维链(CoT)方法提出使用一系列中间步骤 z = (z_1, z_2, ..., z_m) 来连接问题 x 和答案 y ,每个 z_i 是解决问题的重要中间步骤。 当解决问题 x 时,思维 [Math] 被自回归采样,最终答案 [Math] 。 强化学习目标 基于真实答案 y^ ,分配一个值 [Math] , Ki...
简短总结 混合专家模型 (MoEs): 与稠密模型相比, 预训练速度更快 与具有相同参数数量的模型相比,具有更快的 推理速度 需要 大量显存,因为所有专家系统都需要加载到内存中 在 微调方面存在诸多挑战,但 近期的研究 表明,对混合专家模型进行 指令调优具有很大的潜力。 什么是混合专家模型? 模型规模是提升模型性能的关键因素之一。在有限的计算资源预算下,用更少的训练步数训练一个更大的模型,往往比用更多的步数训练一个较小的模型效果更佳。 混合专家模型 (MoE) 的一个显著优势是它们能够在远少于稠密模型所需的计算资源下进行有效的预训练。这意味着在相同的计算预算条件下,您可以显著扩大模型或数据集的...
概述 众所周知,尽管基于Attention机制的Transformer类模型有着良好的并行性能,但它的空间和时间复杂度都是 [Math] 级别的, n 是序列长度,所以当 n 比较大时Transformer模型的计算量难以承受。近来,也有不少工作致力于降低Transformer模型的计算量,比如模型剪枝、量化、蒸馏等精简技术,又或者修改Attention结构,使得其复杂度能降低到 [Math] 甚至 [Math] 。 改变这一复杂度的思路主要有两种: 一是走稀疏化的思路,比如OpenAI的Sparse Attention,通过“只保留小区域内的数值、强制让大部分注意力为零”的方式,来减少Attention的计算量。经过特殊设计之后,Attention矩阵的大部分元素都是0,因此理论上它也能节...
引言 Structured Generation with LLM,是指让LLM按照预先定义的schema,输出符合schema的结构化结果。 常见的应用场景有: 1. 数据处理。主要功能为a b,即从源文本中抽取/生成符合schema的结果,例如给定新闻,进行分类、抽取关键词、生成总结等; 1. Agent。主要功能是Tool Calling,即根据用户query,选择适当的tool和入参。 将 LLM 限制为始终生成符合特定模式的、有效的 JSON 或 YAML,是许多应用的关键功能。 Kor Kor,一个基于prompt的技术方案;Kor比较适合数据处理场景,且原理简单、易于理解,适合作为入门, 并且Kor适用于那些不支持function calling的比较旧的模型。 使用Kor进行...
概述 Medusa 是自投机领域较早的一篇工作,对后续工作启发很大,其主要思想是 multidecoding head + tree attention + typical acceptance(threshold)。Medusa 没有使用独立的草稿模型,而是在原始模型的基础上增加多个解码头(MEDUSA heads),并行预测多个后续 token。 正常的LLM只有一个用于预测 t 时刻token的head。Medusa 在 LLM 的最后一个 Transformer层之后保留原始的 LM Head,然后额外增加多个(假设是 k 个) 可训练的Medusa Head(解码头),分别负责预测 ...
前言 首先看论文题目。Swin Transformer: Hierarchical Vision Transformer using Shifted Windows。即:Swin Transformer是一个用了移动窗口的层级式Vision Transformer 所以Swin来自于 Shifted Windows , 它能够使Vision Transformer像卷积神经网络一样,做层级式的特征提取,这样提取出来的特征具有多尺度的概念 ,这也是 Swin Transformer这篇论文的主要贡献。 标准的Transformer直接用到视觉领域有一些挑战,即: 多尺度问题:比如一张图片里的各种物体尺度不统一,NLP中没有这个问题; 分辨率太大:如果将图片的每一个像素值当作一个token直接输...
Preformer Performer的出发点还是标准的Attention,所以在它那里还是有 [Math] ,然后它希望将复杂度线性化,那就是需要找到新的 [Math] ,使得: [公式] 如果找到合理的从 [Math] 到 [Math] 的映射方案,便是该思路的最大难度了。 激活函数 线性Attention的常见形式如 式3,其中 [Math] 、 [Math] 是值域非负的激活函数。那么如何选取这个激活函数呢?Performer告诉我们,应该选择指数函数 [公式] 首先,我们来看它跟已有的结果有什么不一样。在 Transformers are RNNs 给出的选择是: [公式] 我们知道 1+x 正是 e^x 在 x=0 处的一阶泰勒展开,因此 [Math] 这个选择其实已经相当接近 ...
01背包 描述 有N件物品和一个容量为V的背包。 第i件物品的体积是vi,价值是wi。 求解将哪些物品装入背包,可使这些物品的总体积不超过背包流量,且总价值最大。 二维动态规划 f[i][j] 表示只看前i个物品,总体积是j的情况下,总价值最大是多少。 result = max(f[n][0V]) f[i][j]: 不选第i个物品:f[i][j] = f[i1][j]; 选第i个物品:f[i][j] = f[i1][jv[i]] + w[i](v[i]是第i个物品的体积) 两者之间取最大。 初始化:f[0][0] = 0 代码如下: [代码] 一维动态优化 从上面二维的情况来看,f[i] 只与f[i1]相关,因此只用使用一个一维数组[0v]来存储前一个状态。那么如何来实现呢? 第一个问题:状...
起步 heapq 模块实现了适用于Python列表的最小堆排序算法。 堆是一个树状的数据结构,其中的子节点都与父母排序顺序关系。因为堆排序中的树是满二叉树,因此可以用列表来表示树的结构,使得元素 N 的子元素位于 2N + 1 和 2N + 2 的位置(对于从零开始的索引)。 本文内容将分为三个部分,第一个部分简单介绍 heapq 模块的使用;第二部分回顾堆排序算法;第三部分分析heapq中的实现。 heapq 的使用 创建堆有两个基本的方法:heappush() 和 heapify(),取出堆顶元素用 heappop()。 heappush() 是用来向已有的堆中添加元素,一般从空列表开始构建: [代码] 如果数据已经在列表中,则使用 heapify() 进行重排: [代码] 回顾堆排序算...
计数排序、基数排序、桶排序则属于非比较排序,算法时间复杂度O(n),优于比较排序。但是也有弊端,会多占用一些空间,相当于是用空间换时间。 1. 计数排序: 计数排序的基本思想是:对每一个输入的元素a[i],确定小于 a[i] 的元素个数。所以可以直接把 a[i] 放到它输出数组中的位置上。假设有5个数小于 a[i],所以 a[i] 应该放在数组的第6个位置上。 实现代码如下: [代码] 2. 桶排序: 桶排序的基本思想是:把数组a划分为n个大小相同子区间(桶),每个子区间各自排序,最后合并。桶排序要求数据的分布必须均匀,不然可能会失效。计数排序是桶排序的一种特殊情况,可以把计数排序当成每个桶里只有一个元素的情况。 [代码] 算法实现步骤 1. 根据待排序集合中最大元素和最小元素的差值范围和映...
题目说明 在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。 示例 1: 输入: [3,2,1,5,6,4] 和 k = 2 输出: 5 示例 2: 输入: [3,2,3,1,2,4,5,5,6] 和 k = 4 输出: 4 题解 使用快排的思想 [代码]