INCOMING TRANSMISSION

LATEST UPDATES
🔖 https://stability.ai/news/stablediffusion3researchpaper 概述 SD3 模型与训练策略改进细节 SD3除了将去噪网络从 UNet 改成 DiT 外,SD3 还在模型结构与训练策略上做了很多小改进: 改变训练时噪声采样方法 将一维位置编码改成二维位置编码 提升 VAE 隐空间通道数 对注意力 QK 做归一化以确保高分辨率下训练稳定 本文会简单介绍这些改进。 论文阅读 核心贡献 介绍 Stable Diffusion 3 (SD3) 的文章标题为 Scaling Rectified Flow Transformers for HighResolution Image Synthesis。与其说它是一篇技术报告,更不如说它是一篇论文,因为它...
简介 🔖 https://bagelai.org/ BAGEL 模型原生支持统一的多模态理解和生成,是一个 decoderonly 的模型,BAGEL 在包含文本、图像、视频和网络数据的大量多模态数据上进行了预训练,包括数万亿 tokens。尽管有一些研究尝试扩展其统一模型,但它们主要仍然依赖于标准图像生成和理解任务中的图像文本配对数据进行训练。 然而,最近的研究发现,学术模型与 GPT4o 和 Gemini 2.0 等专有系统在统一多模态理解和生成方面存在显著差距,而这些专有系统的底层技术并未公开。作者认为,弥合这一差距的关键在于使用精心构建的多模态交错数据进行规模化训练。这种多模态交错数据整合了文本、图像、视频和网络来源。通过使用这种多样化的多模态交错数据进行扩展时,模型展现出复杂的、新...
近期,人脸识别研究领域的主要进展之一集中在了 Softmax Loss 的改进之上;本文从两种主要的改进方式——做归一化以及增加类间 margin——展开梳理,介绍了近年来基于 Softmax 的 Loss 的研究进展。 Softmax简介 Softmax Loss 因为其易于优化,收敛快等特性被广泛应用于图像分类领域。然而,直接使用 softmax loss 训练得到的 feature 拿到 retrieval,verification 等“需要设阈值”的任务时,往往并不够好。 这其中的原因还得从 Softmax 的本身的定义说起,Softmax loss 在形式上是 softmax 函数加上交叉熵损失,它的目的是让所有的类别在概率空间具有最大的对数似然,也就是保证所有的类别都能分类正确,...