计数排序、基数排序、桶排序则属于非比较排序,算法时间复杂度O(n),优于比较排序。但是也有弊端,会多占用一些空间,相当于是用空间换时间。 1. 计数排序: 计数排序的基本思想是:对每一个输入的元素a[i],确定小于 a[i] 的元素个数。所以可以直接把 a[i] 放到它输出数组中的位置上。假设有5个数小于 a[i],所以 a[i] 应该放在数组的第6个位置上。 实现代码如下: [代码] 2. 桶排序: 桶排序的基本思想是:把数组a划分为n个大小相同子区间(桶),每个子区间各自排序,最后合并。桶排序要求数据的分布必须均匀,不然可能会失效。计数排序是桶排序的一种特殊情况,可以把计数排序当成每个桶里只有一个元素的情况。 [代码] 算法实现步骤 1. 根据待排序集合中最大元素和最小元素的差值范围和映...
Algorithm
2026-01-11
题目说明 在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。 示例 1: 输入: [3,2,1,5,6,4] 和 k = 2 输出: 5 示例 2: 输入: [3,2,3,1,2,4,5,5,6] 和 k = 4 输出: 4 题解 使用快排的思想 [代码]
引言与背景 策略梯度方法是强化学习中的一种重要方法,它标志着从基于价值的方法向基于策略的方法的重要转变。之前我们主要讨论了基于价值的方法(valuebased),而策略梯度方法则直接优化策略函数(policybased),这是一个重要的进步。 当策略用函数表示时,策略梯度方法的核心思想是通过优化某些标量指标来获得最优策略。与传统的表格表示策略不同,策略梯度方法使用参数化函数 [Math] 来表示策略,其中 [Math] 是参数向量。这种表示方法也可以写成其他形式,如 [Math] 、 [Math] 或 [Math] 。 策略梯度方法具有多种优势: 更高效地处理大型状态/动作空间 具有更强的泛化能力 样本使用效率更高 策略表示:从表格到函数 当策略的表示从表格转变为函数时,存在以下几个关键区别...
💡 不断排除不存在解的区间,直至最后剩下一个 这里归纳最重要的部分: 分析题意,挖掘题目中隐含的 单调性; while (left < right) 退出循环的时候有 left == right 成立,因此无需考虑返回left还是right; 始终思考下一轮搜索区间是什么,如果是 [mid, right] 就对应 left = mid ,如果是 [left, mid 1] 就对应 right = mid 1,是保留 mid 还是 +1、−1 就在这样的思考中完成; 从一个元素什么时候不是解开始考虑下一轮搜索区间是什么 ,把区间分为 2个部分(一个部分肯定不存在目标元素,另一个部分有可能存在目标元素),问题会变得简单很多,这是一条 非常有用 的经验; 每一轮区间被划分成 2 部分,理解 区间划...
💡 GRPO相比PPO主要优势: 背景 GRPO是 DeepSeekMath model中提出的对PPO方法的改进策略: 强化学习(RL)在提升模型数学推理能力方面被证明是有效的 传统PPO算法需要较大训练资源 GRPO作为PPO的变体被提出,可以更高效地优化模型 PPO回顾 PPO的目标函数为: [公式] 其中: [Math] 和 [Math] 分别是当前和旧策略模型 A_t 是优势函数 [Math] 是裁剪相关的超参数 模型训练 如图1上所示,PPO需要同时训练一个Value Model [Math] 和策略模型, 同时需要reference model(通常从SFT model初始化)来限制策略模型训练保持和reference model的行为接近,而 Reward model用来计算...
kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处,我们首先想到的最简单的办法就是蛮力的一个字符一个字符的匹配,但那样的时间复杂度会是O(mn)。kmp算法保证了时间复杂度为O(m+n)。 基本原理 举个例子: 发现x与c不同后,进行移动 a与x不同,再次移动 此时比较到了c与y, 于是下一步移动成了下面这样 这一次的移动与前两次的移动不同,之前每次比较到上面长字符串的字符位置后,直接把模式字符串的首字符与它对齐,这次并没有,原因是这次移动之前,y与c对齐,但是y前边的ab是与自己的前缀ab一样,于是ab并不用再比较,直接从第三个位置开始比较,如图: 所以说kmp算法对于这种情况就直接使用当前比较字符之...
Reinforcement Learning
2026-01-11
引言 大语言模型(LLMs)在近年来取得了显著进展,展现出上下文学习、指令跟随和逐步推理等突出特性。然而,由于这些模型是在包含高质量和低质量数据的预训练语料库上训练的,它们可能会表现出编造事实、生成有偏见或有毒文本等意外行为。因此,将LLMs与人类价值观对齐变得至关重要,特别是在帮助性、诚实性和无害性(3H)方面。 基于人类反馈的强化学习(RLHF)已被验证为有效的对齐方法,但训练过程复杂且不稳定。本文深入分析了RLHF框架,特别是PPO算法的内部工作原理,并提出了PPOmax算法,以提高策略模型训练的稳定性和效果。 RLHF的基本框架 RLHF训练过程包括三个主要阶段: 1. 监督微调(SFT):模型通过模仿人类标注的对话示例来学习一般的人类对话方式, 优化模型的指令跟随能力 1. 奖励模...
Algorithm
2026-01-11
题意 给定平面上一个圆的圆心位置和半径,从圆中以均匀的概率随机选取点。 分析 拒绝取样 其实我的第一反应是用拒绝取样(Rejection Sampling)的思路来做:首先从这个圆的与坐标轴平行的外切正方形中均匀随机选取点,然后判断点是否位于圆中;如果不在,重新生成一个新的点,再次进行判断;否则直接返回。 直觉上来说,拒绝取样显然是正确的;不过我们可以用一种稍微更加形式化的方法来描述。(以下内容参考了拒绝采样(reject sampling)的简单认识,非常直观形象。) 下图是一个随机变量的密度函数曲线,试问如何获得这个随机变量的样本呢? 如果你像我一样,已经把概率论与数理统计统统还给数学老师了,那么提示一下,概率密度函数(PDF)是累积分布函数(CDF)的导数,反映的是概率的“密集程度”。...
Algorithm
2026-01-11
根据一棵树的先序遍历和中序遍历,或者后序遍历和中序遍历序列,都可以唯一地确定一棵树。 树中的节点,分为度为0,1,2的结点。如果树中只有一个节点,那么可以唯一确定一棵树,即只有一个节点的树。 当树中结点个数大于等于2的情况,树中的叶子结点和它的父亲结点中,至少有一种存在如下的情况。(为方便起见,我们先从叶子节点入手) case 1: case2: case 3: A D F / \ / \ B C E G 即,叶子结点的父亲有两个孩子,只有左孩子,只有右孩子的情况。我们只需要证明,如果树存在这三种结构中的哪一种,可以唯一确定一棵树,什么情况下又不能唯一确定一棵树呢? 1. case 1: A / \ B C 前序遍历: ABC, 后序遍历: BCA 现在,我们根据遍历序列,看看能否得到另一种...
Reinforcement Learning
2026-01-11
强化学习基础 改进算法 LLM中的RL
Reinforcement Learning
2026-01-11
回顾 PPO [公式] 其中 (q, a) 是 数据集 [Math] 中采样的 questionanswer pair, [Math] 是重要性采样比的clip范围, [Math] 是时间步 t 的优势估计量. 给定 value function V 和 reward function R , [Math] 使用广义优势估计 (GAE) 来计算: [公式] 其中, [公式] GRPO 相比于 PPO, GRPO 去掉了value function 并以分组的方式估计优势。对于特定的问答对 (q, a), behavior policy [Math] 生成了一组 G 个 response \{o...