INCOMING TRANSMISSION

LATEST UPDATES
01背包 描述 有N件物品和一个容量为V的背包。 第i件物品的体积是vi,价值是wi。 求解将哪些物品装入背包,可使这些物品的总体积不超过背包流量,且总价值最大。 二维动态规划 f[i][j] 表示只看前i个物品,总体积是j的情况下,总价值最大是多少。 result = max(f[n][0V]) f[i][j]: 不选第i个物品:f[i][j] = f[i1][j]; 选第i个物品:f[i][j] = f[i1][jv[i]] + w[i](v[i]是第i个物品的体积) 两者之间取最大。 初始化:f[0][0] = 0 代码如下: [代码] 一维动态优化 从上面二维的情况来看,f[i] 只与f[i1]相关,因此只用使用一个一维数组[0v]来存储前一个状态。那么如何来实现呢? 第一个问题:状...
起步 heapq 模块实现了适用于Python列表的最小堆排序算法。 堆是一个树状的数据结构,其中的子节点都与父母排序顺序关系。因为堆排序中的树是满二叉树,因此可以用列表来表示树的结构,使得元素 N 的子元素位于 2N + 1 和 2N + 2 的位置(对于从零开始的索引)。 本文内容将分为三个部分,第一个部分简单介绍 heapq 模块的使用;第二部分回顾堆排序算法;第三部分分析heapq中的实现。 heapq 的使用 创建堆有两个基本的方法:heappush() 和 heapify(),取出堆顶元素用 heappop()。 heappush() 是用来向已有的堆中添加元素,一般从空列表开始构建: [代码] 如果数据已经在列表中,则使用 heapify() 进行重排: [代码] 回顾堆排序算...
计数排序、基数排序、桶排序则属于非比较排序,算法时间复杂度O(n),优于比较排序。但是也有弊端,会多占用一些空间,相当于是用空间换时间。 1. 计数排序: 计数排序的基本思想是:对每一个输入的元素a[i],确定小于 a[i] 的元素个数。所以可以直接把 a[i] 放到它输出数组中的位置上。假设有5个数小于 a[i],所以 a[i] 应该放在数组的第6个位置上。 实现代码如下: [代码] 2. 桶排序: 桶排序的基本思想是:把数组a划分为n个大小相同子区间(桶),每个子区间各自排序,最后合并。桶排序要求数据的分布必须均匀,不然可能会失效。计数排序是桶排序的一种特殊情况,可以把计数排序当成每个桶里只有一个元素的情况。 [代码] 算法实现步骤 1. 根据待排序集合中最大元素和最小元素的差值范围和映...
题目说明 在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。 示例 1: 输入: [3,2,1,5,6,4] 和 k = 2 输出: 5 示例 2: 输入: [3,2,3,1,2,4,5,5,6] 和 k = 4 输出: 4 题解 使用快排的思想 [代码]
💡 不断排除不存在解的区间,直至最后剩下一个 这里归纳最重要的部分: 分析题意,挖掘题目中隐含的 单调性; while (left < right) 退出循环的时候有 left == right 成立,因此无需考虑返回left还是right; 始终思考下一轮搜索区间是什么,如果是 [mid, right] 就对应 left = mid ,如果是 [left, mid 1] 就对应 right = mid 1,是保留 mid 还是 +1、−1 就在这样的思考中完成; 从一个元素什么时候不是解开始考虑下一轮搜索区间是什么 ,把区间分为 2个部分(一个部分肯定不存在目标元素,另一个部分有可能存在目标元素),问题会变得简单很多,这是一条 非常有用 的经验; 每一轮区间被划分成 2 部分,理解 区间划...
上图是Yolo v4中,对各种detector部件的总结:包含Input、backbone、neck、head、... Backbone Neck 例如:SPP 、 ASPP 、 RFB、 SAM 用来增加感受野 特征融合,主要是指不同输出层直接的特征融合,主要包括FPN、PAN、SFAM、ASFF和BiFPN。 结构 One stage TwoStage Anchor Free Transformer Problems
kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处,我们首先想到的最简单的办法就是蛮力的一个字符一个字符的匹配,但那样的时间复杂度会是O(mn)。kmp算法保证了时间复杂度为O(m+n)。 基本原理 举个例子: 发现x与c不同后,进行移动 a与x不同,再次移动 此时比较到了c与y, 于是下一步移动成了下面这样 这一次的移动与前两次的移动不同,之前每次比较到上面长字符串的字符位置后,直接把模式字符串的首字符与它对齐,这次并没有,原因是这次移动之前,y与c对齐,但是y前边的ab是与自己的前缀ab一样,于是ab并不用再比较,直接从第三个位置开始比较,如图: 所以说kmp算法对于这种情况就直接使用当前比较字符之...
题意 给定平面上一个圆的圆心位置和半径,从圆中以均匀的概率随机选取点。 分析 拒绝取样 其实我的第一反应是用拒绝取样(Rejection Sampling)的思路来做:首先从这个圆的与坐标轴平行的外切正方形中均匀随机选取点,然后判断点是否位于圆中;如果不在,重新生成一个新的点,再次进行判断;否则直接返回。 直觉上来说,拒绝取样显然是正确的;不过我们可以用一种稍微更加形式化的方法来描述。(以下内容参考了拒绝采样(reject sampling)的简单认识,非常直观形象。) 下图是一个随机变量的密度函数曲线,试问如何获得这个随机变量的样本呢? 如果你像我一样,已经把概率论与数理统计统统还给数学老师了,那么提示一下,概率密度函数(PDF)是累积分布函数(CDF)的导数,反映的是概率的“密集程度”。...
根据一棵树的先序遍历和中序遍历,或者后序遍历和中序遍历序列,都可以唯一地确定一棵树。 树中的节点,分为度为0,1,2的结点。如果树中只有一个节点,那么可以唯一确定一棵树,即只有一个节点的树。 当树中结点个数大于等于2的情况,树中的叶子结点和它的父亲结点中,至少有一种存在如下的情况。(为方便起见,我们先从叶子节点入手) case 1: case2: case 3: A D F / \ / \ B C E G 即,叶子结点的父亲有两个孩子,只有左孩子,只有右孩子的情况。我们只需要证明,如果树存在这三种结构中的哪一种,可以唯一确定一棵树,什么情况下又不能唯一确定一棵树呢? 1. case 1: A / \ B C 前序遍历: ABC, 后序遍历: BCA 现在,我们根据遍历序列,看看能否得到另一种...
Introduction 由于FPN和Focal loss 的加入,anchorfree模型变得越来越多。在仔细比对了anchorbased和anchorfree目标检测方法后,结合实验结果,论文认为两者的性能差异主要来源于正负样本的定义,假如训练过程中使用相同的正负样本,两者的最终性能将会相差无几。 作者将目前的Anchorfree分为两个大类: 1. keypointbased methods:以CornerNet和ExtremeNet为代表,首先定位几个预定义或自学习的关键点,然后限制物体的空间范围; 1. centerbased methods:以FCOS和Foveabox为代表,使用物体的中心点或区域定义基准点,然后预测从该点到物体边界的四个距离。 为此,论文提出ATSS( Ada...
简介 CornerNet是密歇根大学Hei Law等人在发表ECCV2018的一篇论文,作者总结目前anchorbased方法存在两个缺点: 1. 提取的anchor boxes数量较多,比如DSSD使用40k, RetinaNet使用100k,anchor boxes众多造成anchor boxes正负样本的不均衡; 1. anchor boxes需要调整很多超参数,比如anchor boxes数量、尺寸、比率,影响模型的训练和推断速率。 作者的思路其实来源于一篇多人姿态估计的论文"Endtoend learning for joint detection and grouping"。基于CNN的2D多人姿态估计方法,通常有2个思路(BottomUp Approaches和TopDown ...
Motivation 我们知道object detection的算法主要可以分为两大类:twostage detector和onestage detector。前者是指类似Faster RCNN,RFCN这样需要region proposal的检测算法,这类算法可以达到很高的准确率,但是速度较慢。虽然可以通过减少proposal的数量或降低输入图像的分辨率等方式达到提速,但是速度并没有质的提升。后者是指类似YOLO,SSD这样不需要region proposal,直接回归的检测算法,这类算法速度很快,但是准确率不如前者。作者提出focal loss的出发点也是希望onestage detector可以达到twostage detector的准确率,同时不影响原有的速度。 既然有了出发点,那么...