INCOMING TRANSMISSION

LATEST UPDATES
SNIPER的关键是减少了SNIP的计算量。SNIP借鉴了multiscale training的思想进行训练,multiscale training是用图像金字塔作为模型的输入,这种做法虽然能够提高模型效果,但是计算量的增加也非常明显,因为模型需要处理每个scale图像的每个像素,而SNIPER(Scale Normalization for Image Pyramids with Efficient Resampling)算法以适当的比例处理ground truth(称为chips)周围的上下文区域,在训练期间每个图像生成的chips的数量会根据场景复杂度而自适应地变化,由于SNIPER在采样后的低分辨率的chips上运行,故其可以在训练期间收益于Batch Normalization,...
引言 Structured Generation with LLM,是指让LLM按照预先定义的schema,输出符合schema的结构化结果。 常见的应用场景有: 1. 数据处理。主要功能为a b,即从源文本中抽取/生成符合schema的结果,例如给定新闻,进行分类、抽取关键词、生成总结等; 1. Agent。主要功能是Tool Calling,即根据用户query,选择适当的tool和入参。 将 LLM 限制为始终生成符合特定模式的、有效的 JSON 或 YAML,是许多应用的关键功能。 Kor Kor,一个基于prompt的技术方案;Kor比较适合数据处理场景,且原理简单、易于理解,适合作为入门, 并且Kor适用于那些不支持function calling的比较旧的模型。 使用Kor进行...
总体流程 RPN RPN在Extractor输出的feature maps的基础之上,先增加了一个3x3卷积,然后利用两个1x1的卷积分别进行二分类(是否为正样本)和位置回归。进行分类的卷积核通道数为9×2(9个anchor,每个anchor二分类,使用交叉熵损失),进行回归的卷积核通道数为9×4(9个anchor,每个anchor有4个位置参数)。 接下来RPN做的事情就是利用(AnchorTargetCreator)将20000多个候选的anchor选出2000个proposal并采样256个positive 进行分类和回归位置loss计算。具体过程如下: proposal 前向过程中会做 NMS : 1. 对所有 anchors 做前背景分类和bbox regression回归(lea...
概述 Medusa 是自投机领域较早的一篇工作,对后续工作启发很大,其主要思想是 multidecoding head + tree attention + typical acceptance(threshold)。Medusa 没有使用独立的草稿模型,而是在原始模型的基础上增加多个解码头(MEDUSA heads),并行预测多个后续 token。 正常的LLM只有一个用于预测 t 时刻token的head。Medusa 在 LLM 的最后一个 Transformer层之后保留原始的 LM Head,然后额外增加多个(假设是 k 个) 可训练的Medusa Head(解码头),分别负责预测 ...
一、泊松分布 日常生活中,大量事件是有固定频率的。 某医院平均每小时出生3个婴儿 某公司平均每10分钟接到1个电话 某超市平均每天销售4包xx牌奶粉 某网站平均每分钟有2次访问 它们的特点就是,我们可以预估这些事件的总数,但是没法知道具体的发生时间。已知平均每小时出生3个婴儿,请问下一个小时,会出生几个? 有可能一下子出生6个,也有可能一个都不出生。这是我们没法知道的。 泊松分布就是描述某段时间内,事件具体的发生概率。 [Formula] 上面就是泊松分布的公式。等号的左边, P 表示概率, N 表示某种函数关系, t 表示时间, n 表示数量,1小时内出生3个婴儿的概率,就表示为 P(N(1...
mAP定义及相关概念 mAP: mean Average Precision, 即各类别AP的平均值 AP: PR曲线下面积,后文会详细讲解 PR曲线: PrecisionRecall曲线 Precision: TP / (TP + FP) Recall: TP / (TP + FN) TP: IoU0.5的检测框数量(同一Ground Truth只计算一次) FP: IoU= 0, 0.1, 0.2, ..., 1共11个点时的Precision最大值,然后AP就是这11个Precision的平均值。 在VOC2010及以后,需要针对每一个不同的Recall值(包括0和1),选取其大于等于这些Recall值时的Precision最大值,然后计算PR曲线下面积作为AP值。 mAP计算示例 假...
NMS 过程: 1. 根据分类概率从小到大排序ABCDEF 1. 从最大概率F开始,F与A~E的IOU是否大于阈值 1. 大于的扔掉,从剩下的当中继续重复2~3 [代码] SoftNMS NMS算法保留score最高的预测框,并将与当前预测框重叠较多的proposals视作冗余,显然,在实际的检测任务中,这种思路有明显的缺点,比如对于稠密物体检测,当同类的两个目标距离较近时,如果使用原生的nms,就会导致其中一个目标不能被召回,为了提高这种情况下目标检测的召回率,SoftNMS应运而生。对于FasterRCNN在MSCOCO数据集上的结果,将NMS改成SoftNMS,mAP提升了1.1%。 它认为重叠较多的proposals也有可能包含有效目标,只不过重叠区域越大可能性越小。参见下图,NMS...
概述 HiPPO(Highorder Polynomial Projection Operators)是目前大热的structured state space model (S4)及其后续工作的backbone. State space mode主要是控制学科里的内容,最近被引入深度学习领域来解决长距离依赖问题。长距离依赖建模的核心问题是如何通过有限的memory来尽可能记住之前所有的历史信息。当前的主流序列建模模型(即Transformer和RNN) 存在着普遍的遗忘问题 fixedsize context windows: Transformer的window size通常是有限的,一般来说quadratic的attention最多建模到大约10k的token就到计算极限了 vanish...
💡 GRPO相比PPO主要优势: 背景 GRPO是 DeepSeekMath model中提出的对PPO方法的改进策略: 强化学习(RL)在提升模型数学推理能力方面被证明是有效的 传统PPO算法需要较大训练资源 GRPO作为PPO的变体被提出,可以更高效地优化模型 PPO回顾 PPO的目标函数为: [公式] 其中: [Math] 和 [Math] 分别是当前和旧策略模型 A_t 是优势函数 [Math] 是裁剪相关的超参数 模型训练 如图1上所示,PPO需要同时训练一个Value Model [Math] 和策略模型, 同时需要reference model(通常从SFT model初始化)来限制策略模型训练保持和reference model的行为接近,而 Reward model用来计算...
概述 投机解码(Speculative Decoding)也叫预测解码/投机采样,它会利用小模型来预测大型模型的行为,从而提升模型在解码(decoding)阶段的解码效率问题,加速大型模型的执行。其核心思路如下图所示,首先以低成本的方式(以小模型为主,也有多头,检索,Early Exit 等方式)快速生成多个候选 Token(串行序列、树、多头树等),然后通过一次并行验证阶段快速验证多个 Token的正确性,只要平均每个 Step 验证的 Token 数 1,就可以一次性生成多个token,进而减少总的 Decoding 步数,实现加速的目的。 下图左侧是自回归解码模型,右侧是投机解码机制。 从本质上来说,投机解码希望在推理阶段在不大幅度改变模型的情况下,通过更好利用冗余算力来并行"投机"地...
上图是Yolo v4中,对各种detector部件的总结:包含Input、backbone、neck、head、... Backbone Neck 例如:SPP 、 ASPP 、 RFB、 SAM 用来增加感受野 特征融合,主要是指不同输出层直接的特征融合,主要包括FPN、PAN、SFAM、ASFF和BiFPN。 结构 One stage TwoStage Anchor Free Transformer Problems