INCOMING TRANSMISSION

LATEST UPDATES
Segment Anything Segment Anything(SA)项目:一个用于图像分割的新任务、新模型和新数据集 通过FM(基础模型)+prompt解决了CV中难度较大的分割任务,给计算机视觉实现基础模型+提示学习+指令学习提供了一种思路 关键:加大模型容量(构造海量的训练数据,或者构造合适的自监督任务来预训练) Segment Anything Task SAM的一部分灵感是来源于NLP中的基座模型(Foundation Model),Foundation Model是OpenAI提出的一个概念,它指的是在超大量数据集上预训练过的大模型(如GPT系列、BERT),这些模型具有非常强大的 zeroshot 和 fewshot能力,结合prompt engineering和fine ...
概述 投机解码(Speculative Decoding)也叫预测解码/投机采样,它会利用小模型来预测大型模型的行为,从而提升模型在解码(decoding)阶段的解码效率问题,加速大型模型的执行。其核心思路如下图所示,首先以低成本的方式(以小模型为主,也有多头,检索,Early Exit 等方式)快速生成多个候选 Token(串行序列、树、多头树等),然后通过一次并行验证阶段快速验证多个 Token的正确性,只要平均每个 Step 验证的 Token 数 1,就可以一次性生成多个token,进而减少总的 Decoding 步数,实现加速的目的。 下图左侧是自回归解码模型,右侧是投机解码机制。 从本质上来说,投机解码希望在推理阶段在不大幅度改变模型的情况下,通过更好利用冗余算力来并行"投机"地...
这篇文章主要去“复盘”一下主流的长度外推结果,并试图从中发现免训练长度外推的关键之处。 问题定义 顾名思义,免训练长度外推,就是不需要用长序列数据进行额外的训练,只用短序列语料对模型进行训练,就可以得到一个能够处理和预测长序列的模型,即“Train Short, Test Long”。那么如何判断一个模型能否用于长序列呢?最基本的指标就是模型的长序列Loss或者PPL不会爆炸,更加符合实践的评测则是输入足够长的Context,让模型去预测答案,然后跟真实答案做对比,算BLEU、ROUGE等,LongBench就是就属于这类榜单。 但要注意的是,长度外推应当不以牺牲远程依赖为代价——否则考虑长度外推就没有意义了,倒不如直接截断文本——这意味着通过显式地截断远程依赖的方案都需要谨慎选择,比如AL...
Deformable Convolution 在正式介绍这个工作之前很有必要先了解什么是 Deformable Convolution 。 Deformable Convolution 是MSRA的代季峰老师以及实习生在2017年提出的一种全新的卷积结构。这种方法将固定形状的卷积过程改造成了能适应物体形状的可变的卷积过程,从而使结构适应物体形变的能力更强。 传统的CNN只能靠一些简单的方法(比如max pooling)来适应物体的形变,如果形变的太厉害就无能为力了。因为CNN的卷积核的geometric structure是fixed的,也就是固定住的。卷积核总是在固定位置对输入特征特征进行采样。 为了改变这种情况专家们想了很多方法,最常见的有两种: 1. 使用大量的数据进行训练。比如用Im...
比起两年前,NLG任务已经得到了非常有效的发展,transformers模块的使用广泛程度也达到前所未有的程度。在模型推理预测时,一个核心的语句就是model.generate(),本文就来详细介绍一下generate方法是如何运作的。在生成的过程中,包含了诸多生成策略,本文将以最常用的beam search为例,尽可能详细地展开介绍。 随着各种LLM的出现,transformers中与generate相关的代码发生了一些变化,主要区别在于: generate的源码位置发生了改变; generate方法中,采用一个generation_config参数来管理生成相关的各种配置,并优化了逻辑,使得逻辑更加清晰。 1. generate的代码位置 在之前版本的transformers中(tran...
Learning to rank 排序学习是推荐、搜索、广告的核心方法。排序结果的好坏很大程度影响用户体验、广告收入等。排序学习可以理解为机器学习中用户排序的方法,这里首先推荐一本微软亚洲研究院刘铁岩老师关于LTR的著作,Learning to Rank for Information Retrieval,书中对排序学习的各种方法做了很好的阐述和总结。我这里是一个超级精简版。 排序学习是一个有监督的机器学习过程,对每一个给定的查询-文档对,抽取特征,通过日志挖掘或者人工标注的方法获得真实数据标注。然后通过排序模型,使得输入能够和实际的数据相似。常用的排序学习分为三种类型:PointWise,PairWise和ListWise。 PointWise 单文档方法的处理对象是单独的一篇文档,将文档...