INCOMING TRANSMISSION

LATEST UPDATES
简短总结 混合专家模型 (MoEs): 与稠密模型相比, 预训练速度更快 与具有相同参数数量的模型相比,具有更快的 推理速度 需要 大量显存,因为所有专家系统都需要加载到内存中 在 微调方面存在诸多挑战,但 近期的研究 表明,对混合专家模型进行 指令调优具有很大的潜力。 什么是混合专家模型? 模型规模是提升模型性能的关键因素之一。在有限的计算资源预算下,用更少的训练步数训练一个更大的模型,往往比用更多的步数训练一个较小的模型效果更佳。 混合专家模型 (MoE) 的一个显著优势是它们能够在远少于稠密模型所需的计算资源下进行有效的预训练。这意味着在相同的计算预算条件下,您可以显著扩大模型或数据集的...
概述 众所周知,尽管基于Attention机制的Transformer类模型有着良好的并行性能,但它的空间和时间复杂度都是 [Math] 级别的, n 是序列长度,所以当 n 比较大时Transformer模型的计算量难以承受。近来,也有不少工作致力于降低Transformer模型的计算量,比如模型剪枝、量化、蒸馏等精简技术,又或者修改Attention结构,使得其复杂度能降低到 [Math] 甚至 [Math] 。 改变这一复杂度的思路主要有两种: 一是走稀疏化的思路,比如OpenAI的Sparse Attention,通过“只保留小区域内的数值、强制让大部分注意力为零”的方式,来减少Attention的计算量。经过特殊设计之后,Attention矩阵的大部分元素都是0,因此理论上它也能节...
前言 首先看论文题目。Swin Transformer: Hierarchical Vision Transformer using Shifted Windows。即:Swin Transformer是一个用了移动窗口的层级式Vision Transformer 所以Swin来自于 Shifted Windows , 它能够使Vision Transformer像卷积神经网络一样,做层级式的特征提取,这样提取出来的特征具有多尺度的概念 ,这也是 Swin Transformer这篇论文的主要贡献。 标准的Transformer直接用到视觉领域有一些挑战,即: 多尺度问题:比如一张图片里的各种物体尺度不统一,NLP中没有这个问题; 分辨率太大:如果将图片的每一个像素值当作一个token直接输...
Preformer Performer的出发点还是标准的Attention,所以在它那里还是有 [Math] ,然后它希望将复杂度线性化,那就是需要找到新的 [Math] ,使得: [公式] 如果找到合理的从 [Math] 到 [Math] 的映射方案,便是该思路的最大难度了。 激活函数 线性Attention的常见形式如 式3,其中 [Math] 、 [Math] 是值域非负的激活函数。那么如何选取这个激活函数呢?Performer告诉我们,应该选择指数函数 [公式] 首先,我们来看它跟已有的结果有什么不一样。在 Transformers are RNNs 给出的选择是: [公式] 我们知道 1+x 正是 e^x 在 x=0 处的一阶泰勒展开,因此 [Math] 这个选择其实已经相当接近 ...
Segment Anything Segment Anything(SA)项目:一个用于图像分割的新任务、新模型和新数据集 通过FM(基础模型)+prompt解决了CV中难度较大的分割任务,给计算机视觉实现基础模型+提示学习+指令学习提供了一种思路 关键:加大模型容量(构造海量的训练数据,或者构造合适的自监督任务来预训练) Segment Anything Task SAM的一部分灵感是来源于NLP中的基座模型(Foundation Model),Foundation Model是OpenAI提出的一个概念,它指的是在超大量数据集上预训练过的大模型(如GPT系列、BERT),这些模型具有非常强大的 zeroshot 和 fewshot能力,结合prompt engineering和fine ...
这篇文章主要去“复盘”一下主流的长度外推结果,并试图从中发现免训练长度外推的关键之处。 问题定义 顾名思义,免训练长度外推,就是不需要用长序列数据进行额外的训练,只用短序列语料对模型进行训练,就可以得到一个能够处理和预测长序列的模型,即“Train Short, Test Long”。那么如何判断一个模型能否用于长序列呢?最基本的指标就是模型的长序列Loss或者PPL不会爆炸,更加符合实践的评测则是输入足够长的Context,让模型去预测答案,然后跟真实答案做对比,算BLEU、ROUGE等,LongBench就是就属于这类榜单。 但要注意的是,长度外推应当不以牺牲远程依赖为代价——否则考虑长度外推就没有意义了,倒不如直接截断文本——这意味着通过显式地截断远程依赖的方案都需要谨慎选择,比如AL...
Deformable Convolution 在正式介绍这个工作之前很有必要先了解什么是 Deformable Convolution 。 Deformable Convolution 是MSRA的代季峰老师以及实习生在2017年提出的一种全新的卷积结构。这种方法将固定形状的卷积过程改造成了能适应物体形状的可变的卷积过程,从而使结构适应物体形变的能力更强。 传统的CNN只能靠一些简单的方法(比如max pooling)来适应物体的形变,如果形变的太厉害就无能为力了。因为CNN的卷积核的geometric structure是fixed的,也就是固定住的。卷积核总是在固定位置对输入特征特征进行采样。 为了改变这种情况专家们想了很多方法,最常见的有两种: 1. 使用大量的数据进行训练。比如用Im...
unsupported operation: more than one element of the writtento tensor refers to a single memory location. Please clone() the tensor before performing the operation. 出现这种情况可能是在.backward()之前使用了 .expand()或者.expand_as()函数。具体原因可以看看这个老哥的提问:link 解决办法:在 .expand()或者.expand_as()函数后面添加.clone()就可以解决。
比起两年前,NLG任务已经得到了非常有效的发展,transformers模块的使用广泛程度也达到前所未有的程度。在模型推理预测时,一个核心的语句就是model.generate(),本文就来详细介绍一下generate方法是如何运作的。在生成的过程中,包含了诸多生成策略,本文将以最常用的beam search为例,尽可能详细地展开介绍。 随着各种LLM的出现,transformers中与generate相关的代码发生了一些变化,主要区别在于: generate的源码位置发生了改变; generate方法中,采用一个generation_config参数来管理生成相关的各种配置,并优化了逻辑,使得逻辑更加清晰。 1. generate的代码位置 在之前版本的transformers中(tran...