INCOMING TRANSMISSION

LATEST UPDATES
技术分析 从方法上来看,条件控制生成的方式分两种:事后修改(ClassifierGuidance)和事前训练(ClassifierFree)。 对于大多数人来说,一个SOTA级别的扩散模型训练成本太大了,而分类器(Classifier)的训练还能接受,所以就想着直接复用别人训练好的无条件扩散模型,用一个分类器来调整生成过程以实现控制生成,这就是事后修改的ClassifierGuidance方案;而对于“财大气粗”的Google、OpenAI等公司来说,它们不缺数据和算力,所以更倾向于往扩散模型的训练过程中就加入条件信号,达到更好的生成效果,这就是事前训练的ClassifierFree方案。 ClassifierGuidance方案最早出自《Diffusion Models Beat GANs...
问题表示 有很多概率问题,尤其是独立重复实验问题,如果用生成函数的方法来做,会显得特别方便。本文要讲的“随机游走”问题便是其中一例,它又被形象地叫做“醉汉问题”,其本质上是一个二项分布,但是由于取了极限,出现了很多新的性质和应用。我们先考虑如下问题: 考虑实数轴上的一个粒子,在 t=0 时刻它位于原点,每过一秒,它要不向前移动一格(+1),要不就向后移动一格(1),问 n 秒后它所处位置的概率分布。 不难发现,这个问题跟二项分布是雷同的。如果把这个粒子形象比喻成一个“喝醉酒的人”,那么上面的走法就类似于一个完全不省人事的醉汉走路问题了。(当然,醉汉是在三维空间走路的,这里简单起见,只描述了一维...
序言 极大似然估计与贝叶斯估计是统计中两种对模型的参数确定的方法,两种参数估计方法使用不同的思想。前者来自于频率派,认为参数是固定的,我们要做的事情就是根据已经掌握的数据来估计这个参数;而后者属于贝叶斯派,认为参数也是服从某种概率分布的,已有的数据只是在这种参数的分布下产生的。所以,直观理解上,极大似然估计就是假设一个参数 θ ,然后根据数据来求出这个 θ . 而贝叶斯估计的难点在于 p(θ) 需要人为设定,之后再考虑结合MAP(maximum a posterior)方法来求一个具体的 θ . 所以极大似然估计与贝叶斯估计最大的不同就在于是否考虑了先验,而两者适用范围也变成了:极大似然估计适用于数据大量,估计的参数能够较好的反映实际情况;而贝叶斯估计则在数据量较少或者比较稀疏的情况下,考虑...
SD模型原理 SD是CompVis、Stability AI和LAION等公司研发的一个文生图模型,它的模型和代码是开源的,而且训练数据LAION5B也是开源的。SD在开源90天github仓库就收获了33K的stars,可见这个模型是多受欢迎。 SD是一个基于latent的扩散模型,它在UNet中引入text condition来实现基于文本生成图像。SD的核心来源于Latent Diffusion这个工作,常规的扩散模型是基于pixel的生成模型,而Latent Diffusion是基于latent的生成模型,它先采用一个autoencoder将图像压缩到latent空间,然后用扩散模型来生成图像的latents,最后送入autoencoder的decoder模块就可以得到生成的图像。 ...
这篇博客介绍一下集成学习的几类:Bagging,Boosting以及Stacking。 传统机器学习算法 (例如:决策树,人工神经网络,支持向量机,朴素贝叶斯等) 的目标都是寻找一个最优分类器尽可能的将训练数据分开。集成学习 (Ensemble Learning) 算法的基本思想就是将多个分类器组合,从而实现一个预测效果更好的集成分类器。集成算法可以说从一方面验证了中国的一句老话:三个臭皮匠,赛过诸葛亮。 Thomas G. Dietterich 指出了集成算法在统计,计算和表示上的有效原因: 统计上的原因 一个学习算法可以理解为在一个假设空间 H 中选找到一个最好的假设。但是,当训练样本的数据量小到不够用来精确的学习到目标假设时,学习算法可以找到很多满足训练样本的分类器。所以,学习算法选择...
ControlNet应该算是2023年文生图领域最重要的工作,它让文生图模型Stable Diffusion实现了文本之外的可控生成,让AI绘画实现了质的飞跃。这篇文章我们将简单总结一下ControlNet技术细节。 模型设计 ControlNet的模型结构如下所示,这里是直接复制一份SD的上半部分:Encoder和中间的Middle Block。 ControlNet的输入和原始的SD一样,包括noisy latents、time embedding以及text embedding。除此之外,ControlNet还需要引入额外的condition,这个condition是和原图一样大小的图像,比如canny边界图或者人体骨架图。这里并没有像SD那样采用VAE对condition进行编码,而...
给定一个包含 n 维数据 x 的数据集 D , 简单起见,假设数据 [Math] . 由于真正对联合分布建模的时候, x,y 都是随机变量,故而只需讨论 p(X)=p(x_1,...,x_n) 即可,毕竟只需要令 x_n=y 即可。 给定一个具体的任务,如MNIST中的手写数字二值图分类,从Generative的角度进行Represent,并在Inference中Learning. 下面先介绍: 描述如何对这个MINST任务建模 p(X,Y) (Representation) 对MNIST任务建模 对于一张pixel为 [Math] 大小的图片,令 x_1 表示第一个pixel的随机变量, [Math] ,需明确: 任务目标:学习一个模型分布 [Math] ,使采样时 [Math] , x ...
💡 随机微分 在DDPM中,扩散过程被划分为了固定的T步,还是用DDPM中的类比来说,就是“拆楼”和“建楼”都被事先划分为了T步,这个划分有着相当大的人为性。事实上,真实的“拆”、“建”过程应该是没有刻意划分的步骤的,我们可以将它们理解为一个在时间上连续的变换过程,可以用随机微分方程(Stochastic Differential Equation,SDE)来描述。 为此,我们用下述SDE描述前向过程(“拆楼”): [公式] 相信很多读者都对SDE很陌生,笔者也只是在硕士阶段刚好接触过一段时间,略懂皮毛。不过不懂不要紧,我们只需要将它看成是下述离散形式在 [Math] 时的极限: [公式] 再直白一点,如果假设拆楼需要1天,那么拆楼就是 [Math] 从 t=0 到 t=1 的变化过程,每一...
🔖 https://stability.ai/news/stablediffusion3researchpaper 概述 SD3 模型与训练策略改进细节 SD3除了将去噪网络从 UNet 改成 DiT 外,SD3 还在模型结构与训练策略上做了很多小改进: 改变训练时噪声采样方法 将一维位置编码改成二维位置编码 提升 VAE 隐空间通道数 对注意力 QK 做归一化以确保高分辨率下训练稳定 本文会简单介绍这些改进。 论文阅读 核心贡献 介绍 Stable Diffusion 3 (SD3) 的文章标题为 Scaling Rectified Flow Transformers for HighResolution Image Synthesis。与其说它是一篇技术报告,更不如说它是一篇论文,因为它...
问题定义 多元二次多项式,维度为 n ,那么可以用以下公式描述该函数: [Formula] 其中 a_{i,j} 为二次项系数,共有 n^2 项, 1≤i,j≤n ,且所有的 a 不全为0,即 ∃a_{i,j}≠0 ; b_k 为一次项系数,共 n 项, 1≤k≤n ; c 为常数项。 记 f(x)=[x_1,x_2,...,x_n]^T ,则上述函数可以写作二次型的形式: 转化过程中A,b满足: A 为n阶对称方阵, A_{i,j}=a_{i,j} 因为 ∃a_{i,j}≠0 ,A不为零矩阵 b_i=b_i 为了后续计算简便,我们将二次型稍作改动: [Formula] 我们的目标就是寻找该函...
基本概念 方向导数:是一个数;反映的是 f(x,y) 在 P_0 点沿方向 v 的变化率。 偏导数:是多个数(每元有一个);是指多元函数沿坐标轴方向的方向导数,因此二元函数就有两个偏导数。 偏导函数:是一个函数;是一个关于点的偏导数的函数。 梯度:是一个向量;每个元素为函数对一元变量的偏导数;它既有大小(其大小为最大方向导数),也有方向。 方向导数 反映的是 f(x,y) 在 P_0 点沿方向 v 的变化率。 例子如下: 题目 设二元函数 f(x, y) = x^2 + y^2 ,分别计算此函数在点 (1, 2) 沿方向 w=\{3, 4\} 与方向 u=\{1, 0\} 的方向导数。 解: ...