INCOMING TRANSMISSION

LATEST UPDATES
1. 概述 新闻推荐系统从海量新闻中推荐出你感兴趣的新闻,百度从海量的搜索结果中找到最优的结果,短视频推荐出你每天都停不下来的视频流,这些里面都包含ANN方法。当然,在现在的检索系统中,往往是多分支并行触发的效果,虽然DNN 大行其道,但是 ANN 一直不可或缺。 通用理解上,ANN(Approximate Nearest Neighbor)是在向量空间中搜索向量最近邻的优化问题。目前业界常用nmslib、Annoy算法作为实现。在实际的工程应用中,ANN是作为一种向量检索技术应用,用于解决长尾Query召回问题。将一个资讯的ANN 召回系统抽象出来大概是下面的样子。 Ann(approximate nearest neighbor)是指一系列用于解决最近邻查找问题的近似算法。最近邻查找问题...
当前,美团搜索整体架构主要由搜索数据平台、在线检索框架及云搜平台、在线AI服务及实验平台三大体系构成。在AI服务及实验平台中,模型训练平台Poker和在线预估框架Augur是搜索AI化的核心组件,解决了模型从离线训练到在线服务的一系列系统问题,极大地提升了整个搜索策略迭代效率、在线模型预估的性能以及排序稳定性,并助力商户、外卖、内容等核心搜索场景业务指标的飞速提升。 首先,美团App内的一次完整的搜索行为主要涉的技术模块。如下图所示,从点击输入框到最终的结果展示,从热门推荐,到动态补全、最终的商户列表展示、推荐理由的展示等,每一个模块都要经过若干层的模型处理或者规则干预,才会将最适合用户(指标)的结果展示在大家的眼前。 为了保证良好的用户体验,技术团队对模型预估能力的要求变得越来越高,同时模...
1.倒排索引召回 1)召回模型有三种: 1.基于行为的召回:根据用户的购买行为推荐相关/相似的商品;(长期行为和实时行为) 2.基于用户偏好的召回:用户画像和多屏互通(移动端到PC端); 3.基于地域的召回; 4.基于搜索词的召回(倒排索引); 2)倒排索引 倒排是指由属性值来确定记录的位置。 倒排索引由单词词典和倒排文件组成, 单词词典是由文档集合中出现过的所有单词构成的字符串集合,单词词典内每条索引项记载单词本身的一些信息以及指向“倒排列表”的指针。 倒排文件记录所有单词的倒排列表顺序。 好处是在找含有该词的文件时,不需要扫描所有文件,而只需要在单词词典中找到该词,然后找到该词对应的倒排列表即可。 Lucene倒排步骤: 1.取得关键词; 2.建立倒排索引;lucene将上面三列分别作为...
一句话总结 正排索引:一个未经处理的数据库中,一般是以文档ID作为索引,以文档内容作为记录。 倒排索引:Inverted index,指的是将单词或记录作为索引,将文档ID作为记录,这样便可以方便地通过单词或记录查找到其所在的文档。 倒排索引创建索引的流程 形成文档列表 首先对原始文档数据进行编号(DocID),形成列表,就是一个文档列表。 创建倒排索引列表 对文档中数据进行分词,得到词条。对词条进行编号,以词条创建索引。保存包含这些词条的文档的编号信息。 搜索的过程 当用户输入任意的词条时,首先对用户输入的数据进行分词,得到用户要搜索的所有词条,然后拿着这些词条去倒排索引列表中进行匹配。找到这些词条就能找到包含这些词条的所有文档的编号。 然后根据这些编号去文档列表中找到文档 正排和倒排 正...
取代RNN——Transformer 在介绍Transformer前我们来回顾一下RNN的结构 对RNN有一定了解的话,一定会知道,RNN有两个很明显的问题 效率问题:需要逐个词进行处理,后一个词要等到前一个词的隐状态输出以后才能开始处理 如果传递距离过长还会有梯度消失、梯度爆炸和遗忘问题 为了缓解传递间的梯度和遗忘问题,设计了各种各样的RNN cell,最著名的两个就是LSTM和GRU了 LSTM (Long Short Term Memory) GRU (Gated Recurrent Unit) 但是,引用网上一个博主的比喻,这么做就像是在给马车换车轮,为什么不直接换成汽车呢? 于是就有了Transformer。Transformer 是Google Brain 2017的提出的一篇工...
SD模型原理 SD是CompVis、Stability AI和LAION等公司研发的一个文生图模型,它的模型和代码是开源的,而且训练数据LAION5B也是开源的。SD在开源90天github仓库就收获了33K的stars,可见这个模型是多受欢迎。 SD是一个基于latent的扩散模型,它在UNet中引入text condition来实现基于文本生成图像。SD的核心来源于Latent Diffusion这个工作,常规的扩散模型是基于pixel的生成模型,而Latent Diffusion是基于latent的生成模型,它先采用一个autoencoder将图像压缩到latent空间,然后用扩散模型来生成图像的latents,最后送入autoencoder的decoder模块就可以得到生成的图像。 ...
原理分析 网络架构: 本文的任务是Object detection,用到的工具是Transformers,特点是Endtoend。 目标检测的任务是要去预测一系列的Bounding Box的坐标以及Label, 现代大多数检测器通过定义一些proposal,anchor或者windows,把问题构建成为一个分类和回归问题来间接地完成这个任务。文章所做的工作,就是将transformers运用到了object detection领域,取代了现在的模型需要手工设计的工作,并且取得了不错的结果。在object detection上DETR准确率和运行时间上和Faster RCNN相当;将模型 generalize 到 panoptic segmentation 任务上,DETR表现甚至还超过了其他...
摘掉Softmax 制约Attention性能的关键因素,其实是定义里边的Softmax!事实上,简单地推导一下就可以得到这个结论。 [Math] 这一步我们得到一个 [Math] 的矩阵,就是这一步决定了Attention的复杂度是 [Math] ;如果没有Softmax,那么就是三个矩阵连乘 [Math] ,而矩阵乘法是满足结合率的,所以我们可以先算 [Math] ,得到一个 [Math] 的矩阵,然后再用 [Math] 左乘它,由于 [Math] ,所以这样算大致的复杂度只是 [Math] (就是 [Math] 左乘那一步占主导)。 也就是说,去掉Softmax的Attention的复杂度可以降到最理想的线性级别 [Math] !这显然就是我们的终极追求:Linear Attentio...
概述 本文介绍一个比较有意思的高效Transformer工作——来自Google的《Transformer Quality in Linear Time》,经过细读之后,笔者认为论文里边真算得上是“惊喜满满”了~ 什么样的结果值得我们用“惊喜”来形容?有没有言过其实?我们不妨先来看看论文做到了什么: 1. 提出了一种新的Transformer变体,它依然具有二次的复杂度,但是相比标准的Transformer,它有着更快的速度、更低的显存占用以及更好的效果; 1. 提出一种新的线性化Transformer方案,它不但提升了原有线性Attention的效果,还保持了做Decoder的可能性,并且做Decoder时还能保持高效的训练并行性。 说实话,笔者觉得做到以上任意一点都是非常难得的,而这篇论...
问题引入 前几天在训练一个新的Transformer模型的时候,发现怎么训都不收敛了。经过一番debug,发现是在做Self Attention的时候 [Math] 之后忘记除以 [Math] 了,于是重新温习了一下为什么除以 [Math] 如此重要的原因。当然,Google的T5确实是没有除以 [Math] 的,但它依然能够正常收敛,那是因为它在初始化策略上做了些调整,所以这个事情还跟初始化有关。 藉着这个机会,本文跟大家一起梳理一下模型的初始化、参数化和标准化等内容,相关讨论将主要以Transformer为心中展开。 参数初始化 采样分布 初始化自然是随机采样的的,所以这里先介绍一下常用的采样分布。一般情况下,我们都是从指定均值和方差的随机分布中进行采样来初始化。其中常用的随机分布有三个...
简短总结 混合专家模型 (MoEs): 与稠密模型相比, 预训练速度更快 与具有相同参数数量的模型相比,具有更快的 推理速度 需要 大量显存,因为所有专家系统都需要加载到内存中 在 微调方面存在诸多挑战,但 近期的研究 表明,对混合专家模型进行 指令调优具有很大的潜力。 什么是混合专家模型? 模型规模是提升模型性能的关键因素之一。在有限的计算资源预算下,用更少的训练步数训练一个更大的模型,往往比用更多的步数训练一个较小的模型效果更佳。 混合专家模型 (MoE) 的一个显著优势是它们能够在远少于稠密模型所需的计算资源下进行有效的预训练。这意味着在相同的计算预算条件下,您可以显著扩大模型或数据集的...
概述 众所周知,尽管基于Attention机制的Transformer类模型有着良好的并行性能,但它的空间和时间复杂度都是 [Math] 级别的, n 是序列长度,所以当 n 比较大时Transformer模型的计算量难以承受。近来,也有不少工作致力于降低Transformer模型的计算量,比如模型剪枝、量化、蒸馏等精简技术,又或者修改Attention结构,使得其复杂度能降低到 [Math] 甚至 [Math] 。 改变这一复杂度的思路主要有两种: 一是走稀疏化的思路,比如OpenAI的Sparse Attention,通过“只保留小区域内的数值、强制让大部分注意力为零”的方式,来减少Attention的计算量。经过特殊设计之后,Attention矩阵的大部分元素都是0,因此理论上它也能节...