INCOMING TRANSMISSION

LATEST UPDATES
💡 原本随机采样的DDPM模型中,也隐含了一个确定性的采样过程DDIM,它的连续极限也是一个ODE。 细想上述过程,可以发现不管是“DDPM→DDIM”还是“SDE→ODE”,都是从随机采样模型过渡到确定性模型,而如果我们一开始的目标就是ODE,那么该过程未免显得有点“迂回”了。在本文中,笔者尝试给出ODE扩散模型的直接推导,并揭示了它与雅可比行列式、热传导方程等内容的联系。 Rectified Flow 理论推导 微分方程 像GAN这样的生成模型,它本质上是希望找到一个确定性变换,能将从简单分布(如标准正态分布)采样出来的随机变量,变换为特定数据分布的样本。flow模型也是生成模型之一,它的思路是反过来,先找到一个能将数据分布变换简单分布的可逆变换,再求解相应的逆变换来得到一个生成模型。 ...
1. 列表和元组总结 列表和元组都是一个可以放置任意数据类型的有序集合,他们有以下共同点 列表和元组中的元素可以任意,并且都可以嵌套。 列表和元组都支持索引,且都支持负数索引,1表示最后一个元素,2表示倒数第二个元素 列表和元组都支持切片操作 都支持in关键词 都可以使用.index()、.count()、sorted()和enumerate()等方法 两者之间的相互转换,list()和tuple() 但是他们也是有区别 列表是动态的,长度大小不固定,可以随意地增加、删减或者改变元素(mutable) 元组是静态的,长度大小不固定,无法增删改,想要对已有的元组做任何“改变”,就只能开辟一块内存,创建新的元组 2. 列表和元组存储方式的差异 由于列表是动态的;元组是静态的,不可变的。这样的差异...
生成器 什么是生成器? 通过列表生成式,我们可以直接创建一个列表,但是,受到内存限制,列表容量肯定是有限的,而且创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。 所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间,在Python中,这种一边循环一边计算的机制,称为生成器:generator 生成器是一个特殊的程序,可以被用作控制循环的迭代行为,python中生成器是迭代器的一种,使用yield返回值函数,每次调用yield会暂停,而可以使用next()函数和send()函数恢复生成器。 生成器类似于返回值为数组的一...
概念 可变对象与不可变对象的区别在于对象本身是否可变。 python内置的一些类型中 可变对象:list dict set 不可变对象:tuple string int float bool 举一个例子 [代码] 上面例子很直观地展现了,可变对象是可以直接被改变的,而不可变对象则不可以 地址问题 下面我们来看一下可变对象的内存地址变化 [代码] 我们可以看到,可变对象变化后,地址是没有改变的 如果两个变量同时指向一个地址 1.可变对象 [代码] 我们可以看到,改变a则b也跟着变,因为他们始终指向同一个地址 2.不可变对象 [代码] 我们可以看到,a改变后,它的地址也发生了变化,而b则维持原来的地址,原来地址中的内容也没有发生变化 作为函数参数 1.可变对象 [代码] 我们可以看到,可变对象作...
概述 python采用的是引用计数机制为主,标记清除和分代收集两种机制为辅的策略。 引用计数 Python语言默认采用的垃圾收集机制是『引用计数法 Reference Counting』,该算法最早George E. Collins在1960的时候首次提出,50年后的今天,该算法依然被很多编程语言使用。 『引用计数法』的原理是:每个对象维护一个ob_ref字段,用来记录该对象当前被引用的次数,每当新的引用指向该对象时,它的引用计数ob_ref加1,每当该对象的引用失效时计数ob_ref减1,一旦对象的引用计数为0,该对象立即被回收,对象占用的内存空间将被释放。 它的缺点是需要额外的空间维护引用计数,这个问题是其次的,不过最主要的问题是它不能解决对象的“循环引用”,因此,也有很多语言比如Jav...
Pycharm 的图形化界面虽然好用,但是在某些场景中,是无法使用的。而 Python 本身已经给我们提供了一个调试神器 pdb. 准备文件 在调试之前先将这两个文件准备好(做为演示用),并放在同级目录中。 utils.py [代码] pdb_demo.py [代码] 进入调试模式 主要有两种方法 做为脚本调用,方法很简单,就像正常执行python脚本一样,只是多加了m pdb [代码] 使用这个方式进入调试模式,会在脚本的第一行开始单步调试。 对于单文件的脚本并没有什么问题,如果是一个大型的项目,项目里有很多的文件,使用这种方式只能大大降低我们的效率。 一般情况下,都会直接在你需要的地方打一个断点,那如何打呢? 只需在你想要打断点的地方加上这两行。 [代码] 然后执行时,也不需要再指定m ...
通过继承创建的新类称为“子类”或“派生类”,被继承的类称为“基类”、“父类”或“超类”,继承的过程,就是从一般到特殊的过程。在某些 OOP 语言中,一个子类可以继承多个基类。但是一般情况下,一个子类只能有一个基类,要实现多重继承,可以通过多级继承来实现 python2中经典类和新式类的继承方式不同,经典类采用深度优先搜索的继承,新式类采用的是广度优先搜索的继承方式 python3中经典类和新式类的继承方式都采用的是都采用广度优先搜索的继承方式 [代码] [代码] 举个例子来说明:现有4个类,A,B,C,D类,D类继承于B类和C类,B类与C类继承于A类。class D(B,C) 实例化D类 深度优先 现在构造函数的继承情况为: 若D类有构造函数,则重写所有父类的继承 若D类没有构造函数,B类有...
整体流程: [代码] 0. 数据预处理 这个步骤主要是crop四路数据,及生成后续步骤所需要的yaml文件。 1. 四路相机与双路相机标定 内参标定 [代码] 这里主要的函数就是: pts = cv2.findChessboardCorners(img, (board_width, board_height))[1] cv2.cornerSubPix(gray, pts, (12, 12), (1, 1), (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1)) det, intr, dist, _, _ = cv2.calibrateCamera(obj_pts, img_pts, self.imgSize, None, No...
Python程序中存储的所有数据都是对象,每一个对象有一个身份,一个类型和一个值。 看变量的实际作用,执行a = 8 这行代码时,就会创建一个值为8的int对象。 变量名是对这个"一个值为8的int对象"的引用。(也可以简称a绑定到8这个对象) 1、可以通过id()来取得对象的身份 这个内置函数,它的参数是a这个变量名,这个函数返回的值 是这个变量a引用的那个"一个值为8的int对象"的内存地址。 [代码] 2、可以通过type()来取得a引用对象的数据类型 [代码] 3、对象的值 当变量出现在表达式中,它会被它引用的对象的值替代。 总结:类型是属于对象,而不是变量。变量只是对对象的一个引用。 对象有可变对象和不可变对象之分。 Python函数传递参数到底是传值还是引用? 传值、引用这个是c...
精巧的flow 不得不说,flow模型是一个在设计上非常精巧的模型。总的来看,flow就是想办法得到一个encoder将输入 𝑥 编码为隐变量 𝑧,并且使得 𝑧 服从标准正态分布。得益于flow模型的精巧设计,这个encoder是可逆的,从而我们可以立马从encoder写出相应的decoder(生成器)出来,因此,只要encoder训练完成,我们就能同时得到decoder,完成生成模型的构建。 为了完成这个构思,不仅仅要使得模型可逆,还要使得对应的雅可比行列式容易计算,为此,NICE提出了加性耦合层,通过多个加性耦合层的堆叠,使得模型既具有强大的拟合能力,又具有单位雅可比行列式。就这样,一种不同于VAE和GAN的生成模型——flow模型就这样出来了,它通过巧妙的构造,让我们能直接去拟合概率分...
💡 Flowbased Models Normalizing Flow Normalizing Flow 是一种基于变换对概率分布进行建模的模型,其通过一系列离散且可逆的变换实现任意分布与先验分布(例如标准高斯分布)之间的相互转换。在 Normalizing Flow 训练完成后,就可以直接从高斯分布中进行采样,并通过逆变换得到原始分布中的样本,实现生成的过程。(有关 Normalizing Flow 的详细理论) 从这个角度看,Normalizing Flow 和 Diffusion Model 是有一些相通的,其做法的对比如下表所示。从表中可以看到,两者大致的过程是非常类似的,尽管依然有些地方不一样,但这两者应该可以通过一定的方法得到一个比较统一的表示。 Continuous Norma...
论文地址: 🔖 https://arxiv.org/pdf/2107.11291 代码地址: 前言 一般来说,我们可以把姿态估计任务分成两个流派:Heatmapbased和Regressionbased。 其主要区别在于监督信息的不同,Heatmapbased方法监督模型学习的是高斯概率分布图,即把GroundTruth中每个点渲染成一张高斯热图,最后网络输出为K张特征图对应K个关键点,然后通过argmax或softargmax来获取最大值点作为估计结果。这种方法由于需要渲染高斯热图,且由于热图中的最值点直接对应了结果,不可避免地需要维持一个相对高分辨率的热图(常见的是64x64,再小的话误差下界过大会造成严重的精度损失),因此也就自然而然导致了很大的计算量和内存开销。 Regression...