背景 RLHF 通常包括三个阶段: 有监督微调(SFT) 奖励建模阶段 (Reward Model) RL微调阶段 直接偏好优化(DPO) 传统的RLHF方法分两步走: 1. 先训练一个奖励模型来判断哪个回答更好 1. 然后用强化学习让语言模型去最大化这个奖励 这个过程很复杂,就像绕了一大圈:先学习"什么是好的",再学习"如何做好"。 DPO发现了一个数学上的捷径: 1. 关键发现:对于任何奖励函数,都存在一个对应的最优策略(语言模型);反过来说,任何语言模型也隐含着一个它认为最优的奖励函数 1. 直接优化:与其先训练奖励模型再训练语言模型,不如直接训练语言模型,让它自己内化"什么是好的" 1. 数学转换:DPO将"学习判断好坏"和"学习生成好内容"这两个任务合二为一,通过一个简单的数学变换...
Generative Model
2026-01-11
💡 Score based generative model SMLD的关键点: 正式开始介绍之前首先解答一下这个问题:scorebased 模型是什么东西,微分方程在这个模型里到底有什么用?我们知道生成模型基本都是从某个现有的分布中进行采样得到生成的样本,为此模型需要完成对分布的建模。根据建模方式的不同可以分为隐式建模(例如 GAN、diffusion models)和显式建模(例如 VAE、normalizing flows)。和上述的模型相同,scorebased 模型也是用一定方式对分布进行了建模。具体而言,这类模型建模的对象是概率分布函数 log 的梯度,也就是 score function,而为了对这个建模对象进行学习,需要使用一种叫做 score matching 的技术,这也...
Large Model
2026-01-11
Stanford Alpaca 结合英文语料通过Self Instruct方式微调LLaMA 7B Stanford Alpaca简介 2023年3月中旬,斯坦福的Rohan Taori等人发布Alpaca(中文名:羊驼):号称只花100美元,人人都可微调Meta家70亿参数的LLaMA大模型(即LLaMA 7B),具体做法是通过52k指令数据,然后在8个80GB A100上训练3个小时,使得Alpaca版的LLaMA 7B在单纯对话上的性能比肩GPT3.5(textdavinci003),这便是指令调优LLaMA的意义所在 论文《Alpaca: A Strong OpenSource InstructionFollowing Model》 GitHub地址:https://github.c...
Large Model
2026-01-11
论文名称:LLaMA: Open and Efficient Foundation Language Models 论文地址: https://arxiv.org/pdf/2302.13971.pdf 代码链接: https://github.com/facebookresearch/llama 背景 模型参数量级的积累,或者训练数据的增加,哪个对性能提升帮助更大? 以 GPT3 为代表的大语言模型 (Large language models, LLMs) 在海量文本集合上训练,展示出了惊人的涌现能力以及零样本迁移和少样本学习能力。GPT3 把模型的量级缩放到了 175B,也使得后面的研究工作继续去放大语言模型的量级。大家好像有一个共识,就是:模型参数量级的增加就会带来同样的性能提升。 但...
Large Model
2026-01-11
背景 随着预训练语言模型进入LLM时代,其参数量愈发庞大。全量微调模型所有参数所需的显存早已水涨船高。 例如: 全参微调Qwen1.57BChat预估要2张80GB的A800,160GB显存 全参微调Qwen1.572BChat预估要20张80GB的A800,至少1600GB显存。 而且,通常不同的下游任务还需要LLM的全量参数,对于算法服务部署来说简直是个灾难 当然,一种折衷做法就是全量微调后把增量参数进行SVD分解保存,推理时再合并参数 为了寻求一个不更新全部参数的廉价微调方案,之前一些预训练语言模型的高效微调(Parameter Efficient finetuning, PEFT)工作,要么插入一些参数或学习外部模块来适应新的下游任务。 LoRA LoRA(LowRank Adapt...
Large Model
2026-01-11
SeedThinkingv1.5 SeedThinkingv1.5 是 ByteDance Seed 团队开发的一个先进推理模型,采用 MixtureofExperts (MoE) 架构,具有 200B 总参数和 20B 激活参数。该模型的核心创新在于其"思考后回答"的机制,在数学、编程、科学推理等任务上取得了卓越的性能。相比DeepSeek R1 ,在很多数据指标上都取得了一定程度的进步。 数据 训练数据分为两大类:可验证问题(有明确答案)和不可验证问题(无明确答案)。模型的推理能力主要来自第一部分,并能泛化到第二部分。 可验证问题数据 可验证数据主要包含 STEM数据, 编程数据,以及逻辑推理数据 STEM 数据 编程数据 逻辑推理数据 不可验证问题数据 这其中的数据主要包含需要基于人类...
Large Model
2026-01-11
Chameleon:生成理解统一模型的开山之作 🔖 https://arxiv.org/pdf/2405.09818 Chameleon 是一个既能做图像理解,又可以做图像或者文本生成任务的,从头训练的 Transformer 模型。完整记录了为实现 mixedmodal 模型的架构设计,稳定训练方法,对齐的配方。并在一系列全面的任务上进行评估:有纯文本任务,也有图像文本任务 (视觉问答、图像字幕),也有图像生成任务,还有混合模态的生产任务。 如下图所示,Chameleon 将所有模态数据 (图像、文本和代码) 都表示为离散 token,并使用统一的 Transformer 架构。训练数据是交错混合模态数据 ∼10T token,以端到端的方式从头开始训练。文本 token 用绿色表示,图像...
Large Model
2026-01-11
通常我们训练神经网络模型的时候默认使用的数据类型为单精度FP32。近年来,为了加快训练时间、减少网络训练时候所占用的内存,并且保存训练出来的模型精度持平的条件下,业界提出越来越多的混合精度训练的方法。这里的混合精度训练是指在训练的过程中,同时使用单精度(FP32)和半精度(FP16)。 浮点数据类型 浮点数据类型主要分为双精度(FP64)、单精度(FP32)、半精度(FP16)。在神经网络模型的训练过程中,一般默认采用单精度(FP32)浮点数据类型,来表示网络模型权重和其他参数。在了解混合精度训练之前,这里简单了解浮点数据类型。 根据IEEE二进制浮点数算术标准(IEEE 754)的定义,浮点数据类型分为双精度(FP64)、单精度(FP32)、半精度(FP16)三种,其中每一种都有三个不同的...
Large Model
2026-01-11
简介 模型结构 32K词表大小 2T训练数据 4K上下文长度 模型种类:7B、13B、70B(用了GQA) LLaMA 2Chat:三个版本——7B 13B 70B 同时 Meta 还发布了 LLaMA 2CHAT,其是基于 LLAMA 2 针对对话场景微调的版本,同样 7B、13B 和 70B 参数三个版本,具体的训练方法与ChatGPT类似 1. 先是监督微调LLaMA2得到SFT版本 (接受了成千上万个人类标注数据的训练,本质是问题答案对 ) 1. 然后使用人类反馈强化学习(RLHF)进行迭代优化 先训练一个奖励模型 然后在奖励模型/优势函数的指引下,通过拒绝抽样(rejection sampling)和近端策略优化(PPO)的方法迭代模型的生成策略 LLAMA 2 的性能表现更加接近...
Large Model
2026-01-11
概述 Kimi k1.5采用了一种简化而有效的强化学习框架,其核心在于长上下文扩展和改进的策略优化方法,而不依赖于更复杂的技术如蒙特卡洛树搜索、价值函数和过程奖励模型。 问题设定 给定训练数据集 D = \{(x_i, y^_i)\}_{i=1}^n ,其中包含问题 x_i 和对应的真实答案 y^_i ,目标是训练一个策略模型 [Math] 来准确解决测试问题。在复杂推理场景中,思维链(CoT)方法提出使用一系列中间步骤 z = (z_1, z_2, ..., z_m) 来连接问题 x 和答案 y ,每个 z_i 是解决问题的重要中间步骤。 当解决问题 x 时,思维 [Math] 被自回归采样,最终答案 [Math] 。 强化学习目标 基于真实答案 y^ ,分配一个值 [Math] , Ki...
Large Model
2026-01-11
引言 Structured Generation with LLM,是指让LLM按照预先定义的schema,输出符合schema的结构化结果。 常见的应用场景有: 1. 数据处理。主要功能为a b,即从源文本中抽取/生成符合schema的结果,例如给定新闻,进行分类、抽取关键词、生成总结等; 1. Agent。主要功能是Tool Calling,即根据用户query,选择适当的tool和入参。 将 LLM 限制为始终生成符合特定模式的、有效的 JSON 或 YAML,是许多应用的关键功能。 Kor Kor,一个基于prompt的技术方案;Kor比较适合数据处理场景,且原理简单、易于理解,适合作为入门, 并且Kor适用于那些不支持function calling的比较旧的模型。 使用Kor进行...
Large Model
2026-01-11
概述 Medusa 是自投机领域较早的一篇工作,对后续工作启发很大,其主要思想是 multidecoding head + tree attention + typical acceptance(threshold)。Medusa 没有使用独立的草稿模型,而是在原始模型的基础上增加多个解码头(MEDUSA heads),并行预测多个后续 token。 正常的LLM只有一个用于预测 t 时刻token的head。Medusa 在 LLM 的最后一个 Transformer层之后保留原始的 LM Head,然后额外增加多个(假设是 k 个) 可训练的Medusa Head(解码头),分别负责预测 ...