INCOMING TRANSMISSION

LATEST UPDATES
1. explode hive wiki对于expolde的解释如下: explode() takes in an array (or a map) as an input and outputs the elements of the array (map) as separate rows. UDTFs can be used in the SELECT expression list and as a part of LATERAL VIEW. As an example of using explode() in the SELECT expression list, consider a table named myTable that has a single column (m...
💡 轻量级网络系列 Introduction Inception 在最初的版本 Inception/GoogleNet,其核心思想是利用多尺寸卷积核去观察输入数据。举个栗子,我们看某个景象由于远近不同,同一个物体的大小也会有所不同,那么不同尺度的卷积核观察的特征就会有这样的效果。于是就有了如下的网络结构图: 于是我们的网络就变胖了,通过增加网络的宽度,提高了对于不同尺度的适应程度。但这样的话,计算量有点大了。 Pointwise Conv 为了减少在上面结构的参数量并降低计算量,于是在 Inception V1 的基础版本上加上了 1x1 卷积核,这就形成了 Inception V1 的最终网络结构,如下图。 这个 1x1 卷积就是 Pointwise Convolution,简称 PW。利...
网络整体介绍 ThunderNet的整体架构如下图所示。 ThunderNet使用320×320像素作为网络的输入分辨率。整体的网络结构分为两部分:Backbone部分和Detection部分。网络的骨干部分为SNet,SNet是基于ShuffleNetV2进行修改得到的。 网络的检测部分,利用了压缩的RPN网络,修改自LightHead RCNN网络用以提高效率。 并提出Context Enhancement Module整合局部和全局特征增强网络特征表达能力。 并提出Spatial Attention Module空间注意模块,引入来自RPN的前后景信息用以优化特征分布。 backbone 部分 1.输入分辨率 为了加快推理(前向操作)速度,作者使用320320大小的输入图像。需要注意的...
Learning to rank 排序学习是推荐、搜索、广告的核心方法。排序结果的好坏很大程度影响用户体验、广告收入等。排序学习可以理解为机器学习中用户排序的方法,这里首先推荐一本微软亚洲研究院刘铁岩老师关于LTR的著作,Learning to Rank for Information Retrieval,书中对排序学习的各种方法做了很好的阐述和总结。我这里是一个超级精简版。 排序学习是一个有监督的机器学习过程,对每一个给定的查询-文档对,抽取特征,通过日志挖掘或者人工标注的方法获得真实数据标注。然后通过排序模型,使得输入能够和实际的数据相似。常用的排序学习分为三种类型:PointWise,PairWise和ListWise。 PointWise 单文档方法的处理对象是单独的一篇文档,将文档...
Apache Hadoop 是一款支持数据密集型分布式应用程序并以Apache 2.0许可协议发布的开源软件框架。它支持在商用硬件构建的大型集群上运行的应用程序。Hadoop是根据谷歌公司发表的MapReduce 和Google文件系统的论文自行实现而成。所有的Hadoop模块都有一个基本假设,即硬件故障是常见情况,应该由框架自动处理。具体参考官方教程。 Hadoop架构 HDFS: 分布式文件存储 YARN: 分布式资源管理 MapReduce: 分布式计算 Others: 利用YARN的资源管理功能实现其他的数据处理方式 内部各个节点基本都是采用MasterWoker架构 Hadoop HDFS 架构 Block数据块; NameNode Secondary NameNode DataN...
1 2