INCOMING TRANSMISSION

LATEST UPDATES
简介 承接 Transformers are RNNs 这篇论文 目的: 为了分析之前linear transformer的效果为什么不好。发现主要是两个原因造成的: 1. 无界梯度(unbounded gradient),会导致模型在训练时不稳定,收敛不好; 1. 注意力稀释(attention dilution),transformer在lower level时应该更关注局部特征,而higher level更关注全局特征,但线性transformer中的attention往往weight 更均匀化,不能聚焦在local区域上,因此称为attention稀释。 解决方案: 1. 对linear attention算出来的output接着做个normalization,形成NormForme...
近期,人脸识别研究领域的主要进展之一集中在了 Softmax Loss 的改进之上;本文从两种主要的改进方式——做归一化以及增加类间 margin——展开梳理,介绍了近年来基于 Softmax 的 Loss 的研究进展。 Softmax简介 Softmax Loss 因为其易于优化,收敛快等特性被广泛应用于图像分类领域。然而,直接使用 softmax loss 训练得到的 feature 拿到 retrieval,verification 等“需要设阈值”的任务时,往往并不够好。 这其中的原因还得从 Softmax 的本身的定义说起,Softmax loss 在形式上是 softmax 函数加上交叉熵损失,它的目的是让所有的类别在概率空间具有最大的对数似然,也就是保证所有的类别都能分类正确,...
unsupported operation: more than one element of the writtento tensor refers to a single memory location. Please clone() the tensor before performing the operation. 出现这种情况可能是在.backward()之前使用了 .expand()或者.expand_as()函数。具体原因可以看看这个老哥的提问:link 解决办法:在 .expand()或者.expand_as()函数后面添加.clone()就可以解决。
1 2