INCOMING TRANSMISSION

LATEST UPDATES
概述 python采用的是引用计数机制为主,标记清除和分代收集两种机制为辅的策略。 引用计数 Python语言默认采用的垃圾收集机制是『引用计数法 Reference Counting』,该算法最早George E. Collins在1960的时候首次提出,50年后的今天,该算法依然被很多编程语言使用。 『引用计数法』的原理是:每个对象维护一个ob_ref字段,用来记录该对象当前被引用的次数,每当新的引用指向该对象时,它的引用计数ob_ref加1,每当该对象的引用失效时计数ob_ref减1,一旦对象的引用计数为0,该对象立即被回收,对象占用的内存空间将被释放。 它的缺点是需要额外的空间维护引用计数,这个问题是其次的,不过最主要的问题是它不能解决对象的“循环引用”,因此,也有很多语言比如Jav...
Pycharm 的图形化界面虽然好用,但是在某些场景中,是无法使用的。而 Python 本身已经给我们提供了一个调试神器 pdb. 准备文件 在调试之前先将这两个文件准备好(做为演示用),并放在同级目录中。 utils.py [代码] pdb_demo.py [代码] 进入调试模式 主要有两种方法 做为脚本调用,方法很简单,就像正常执行python脚本一样,只是多加了m pdb [代码] 使用这个方式进入调试模式,会在脚本的第一行开始单步调试。 对于单文件的脚本并没有什么问题,如果是一个大型的项目,项目里有很多的文件,使用这种方式只能大大降低我们的效率。 一般情况下,都会直接在你需要的地方打一个断点,那如何打呢? 只需在你想要打断点的地方加上这两行。 [代码] 然后执行时,也不需要再指定m ...
通过继承创建的新类称为“子类”或“派生类”,被继承的类称为“基类”、“父类”或“超类”,继承的过程,就是从一般到特殊的过程。在某些 OOP 语言中,一个子类可以继承多个基类。但是一般情况下,一个子类只能有一个基类,要实现多重继承,可以通过多级继承来实现 python2中经典类和新式类的继承方式不同,经典类采用深度优先搜索的继承,新式类采用的是广度优先搜索的继承方式 python3中经典类和新式类的继承方式都采用的是都采用广度优先搜索的继承方式 [代码] [代码] 举个例子来说明:现有4个类,A,B,C,D类,D类继承于B类和C类,B类与C类继承于A类。class D(B,C) 实例化D类 深度优先 现在构造函数的继承情况为: 若D类有构造函数,则重写所有父类的继承 若D类没有构造函数,B类有...
Python程序中存储的所有数据都是对象,每一个对象有一个身份,一个类型和一个值。 看变量的实际作用,执行a = 8 这行代码时,就会创建一个值为8的int对象。 变量名是对这个"一个值为8的int对象"的引用。(也可以简称a绑定到8这个对象) 1、可以通过id()来取得对象的身份 这个内置函数,它的参数是a这个变量名,这个函数返回的值 是这个变量a引用的那个"一个值为8的int对象"的内存地址。 [代码] 2、可以通过type()来取得a引用对象的数据类型 [代码] 3、对象的值 当变量出现在表达式中,它会被它引用的对象的值替代。 总结:类型是属于对象,而不是变量。变量只是对对象的一个引用。 对象有可变对象和不可变对象之分。 Python函数传递参数到底是传值还是引用? 传值、引用这个是c...
1. 概述 新闻推荐系统从海量新闻中推荐出你感兴趣的新闻,百度从海量的搜索结果中找到最优的结果,短视频推荐出你每天都停不下来的视频流,这些里面都包含ANN方法。当然,在现在的检索系统中,往往是多分支并行触发的效果,虽然DNN 大行其道,但是 ANN 一直不可或缺。 通用理解上,ANN(Approximate Nearest Neighbor)是在向量空间中搜索向量最近邻的优化问题。目前业界常用nmslib、Annoy算法作为实现。在实际的工程应用中,ANN是作为一种向量检索技术应用,用于解决长尾Query召回问题。将一个资讯的ANN 召回系统抽象出来大概是下面的样子。 Ann(approximate nearest neighbor)是指一系列用于解决最近邻查找问题的近似算法。最近邻查找问题...
当前,美团搜索整体架构主要由搜索数据平台、在线检索框架及云搜平台、在线AI服务及实验平台三大体系构成。在AI服务及实验平台中,模型训练平台Poker和在线预估框架Augur是搜索AI化的核心组件,解决了模型从离线训练到在线服务的一系列系统问题,极大地提升了整个搜索策略迭代效率、在线模型预估的性能以及排序稳定性,并助力商户、外卖、内容等核心搜索场景业务指标的飞速提升。 首先,美团App内的一次完整的搜索行为主要涉的技术模块。如下图所示,从点击输入框到最终的结果展示,从热门推荐,到动态补全、最终的商户列表展示、推荐理由的展示等,每一个模块都要经过若干层的模型处理或者规则干预,才会将最适合用户(指标)的结果展示在大家的眼前。 为了保证良好的用户体验,技术团队对模型预估能力的要求变得越来越高,同时模...
1.倒排索引召回 1)召回模型有三种: 1.基于行为的召回:根据用户的购买行为推荐相关/相似的商品;(长期行为和实时行为) 2.基于用户偏好的召回:用户画像和多屏互通(移动端到PC端); 3.基于地域的召回; 4.基于搜索词的召回(倒排索引); 2)倒排索引 倒排是指由属性值来确定记录的位置。 倒排索引由单词词典和倒排文件组成, 单词词典是由文档集合中出现过的所有单词构成的字符串集合,单词词典内每条索引项记载单词本身的一些信息以及指向“倒排列表”的指针。 倒排文件记录所有单词的倒排列表顺序。 好处是在找含有该词的文件时,不需要扫描所有文件,而只需要在单词词典中找到该词,然后找到该词对应的倒排列表即可。 Lucene倒排步骤: 1.取得关键词; 2.建立倒排索引;lucene将上面三列分别作为...
一句话总结 正排索引:一个未经处理的数据库中,一般是以文档ID作为索引,以文档内容作为记录。 倒排索引:Inverted index,指的是将单词或记录作为索引,将文档ID作为记录,这样便可以方便地通过单词或记录查找到其所在的文档。 倒排索引创建索引的流程 形成文档列表 首先对原始文档数据进行编号(DocID),形成列表,就是一个文档列表。 创建倒排索引列表 对文档中数据进行分词,得到词条。对词条进行编号,以词条创建索引。保存包含这些词条的文档的编号信息。 搜索的过程 当用户输入任意的词条时,首先对用户输入的数据进行分词,得到用户要搜索的所有词条,然后拿着这些词条去倒排索引列表中进行匹配。找到这些词条就能找到包含这些词条的所有文档的编号。 然后根据这些编号去文档列表中找到文档 正排和倒排 正...
问题表示 有很多概率问题,尤其是独立重复实验问题,如果用生成函数的方法来做,会显得特别方便。本文要讲的“随机游走”问题便是其中一例,它又被形象地叫做“醉汉问题”,其本质上是一个二项分布,但是由于取了极限,出现了很多新的性质和应用。我们先考虑如下问题: 考虑实数轴上的一个粒子,在 t=0 时刻它位于原点,每过一秒,它要不向前移动一格(+1),要不就向后移动一格(1),问 n 秒后它所处位置的概率分布。 不难发现,这个问题跟二项分布是雷同的。如果把这个粒子形象比喻成一个“喝醉酒的人”,那么上面的走法就类似于一个完全不省人事的醉汉走路问题了。(当然,醉汉是在三维空间走路的,这里简单起见,只描述了一维...
给定一个包含 n 维数据 x 的数据集 D , 简单起见,假设数据 [Math] . 由于真正对联合分布建模的时候, x,y 都是随机变量,故而只需讨论 p(X)=p(x_1,...,x_n) 即可,毕竟只需要令 x_n=y 即可。 给定一个具体的任务,如MNIST中的手写数字二值图分类,从Generative的角度进行Represent,并在Inference中Learning. 下面先介绍: 描述如何对这个MINST任务建模 p(X,Y) (Representation) 对MNIST任务建模 对于一张pixel为 [Math] 大小的图片,令 x_1 表示第一个pixel的随机变量, [Math] ,需明确: 任务目标:学习一个模型分布 [Math] ,使采样时 [Math] , x ...
问题定义 多元二次多项式,维度为 n ,那么可以用以下公式描述该函数: [Formula] 其中 a_{i,j} 为二次项系数,共有 n^2 项, 1≤i,j≤n ,且所有的 a 不全为0,即 ∃a_{i,j}≠0 ; b_k 为一次项系数,共 n 项, 1≤k≤n ; c 为常数项。 记 f(x)=[x_1,x_2,...,x_n]^T ,则上述函数可以写作二次型的形式: 转化过程中A,b满足: A 为n阶对称方阵, A_{i,j}=a_{i,j} 因为 ∃a_{i,j}≠0 ,A不为零矩阵 b_i=b_i 为了后续计算简便,我们将二次型稍作改动: [Formula] 我们的目标就是寻找该函...
基本概念 方向导数:是一个数;反映的是 f(x,y) 在 P_0 点沿方向 v 的变化率。 偏导数:是多个数(每元有一个);是指多元函数沿坐标轴方向的方向导数,因此二元函数就有两个偏导数。 偏导函数:是一个函数;是一个关于点的偏导数的函数。 梯度:是一个向量;每个元素为函数对一元变量的偏导数;它既有大小(其大小为最大方向导数),也有方向。 方向导数 反映的是 f(x,y) 在 P_0 点沿方向 v 的变化率。 例子如下: 题目 设二元函数 f(x, y) = x^2 + y^2 ,分别计算此函数在点 (1, 2) 沿方向 w=\{3, 4\} 与方向 u=\{1, 0\} 的方向导数。 解: ...