INCOMING TRANSMISSION

LATEST UPDATES
引言 Diffusion模型近年来在图像生成这一连续域任务中取得了显著成果,展现出强大的生成能力。然而,在文本生成这一离散域任务中整体效果仍不尽如人意,未能在该领域引起广泛关注。 去年,一篇研究离散扩散模型在文本生成的文章《Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution》获得ICML 2024的Best Paper,引发了学术界的广泛兴趣,也激发了新一轮的研究热潮。随后在2025年,越来越多高校和企业也开始积极探索基于Diffusion的文本生成方法。其中,近期备受关注的Block Diffusion也成功入选ICLR oral,进一步推动了该方向的发展。...
🔖 https://www.deepseek.com/ DeepSeek LLM 代码地址: https://github.com/deepseek-ai/DeepSeek-LLM 背景 量化巨头幻方探索AGI(通用人工智能)新组织“深度求索”在成立半年后,发布的第一代大模型,免费商用,完全开源。作为一家隐形的AI巨头,幻方拥有1万枚英伟达A100芯片,有手撸的HAI-LLM训练框架HAI-LLM:高效且轻量的大模型训练工具。 概述 DeepSeek LLMs,这是一系列在2万亿标记的英语和中文大型数据集上从头开始训练的开源模型 在本文中,深入解释了超参数选择、Scaling Laws以及做过的各种微调尝试。校准了先前工作中的Scaling Laws,并提出了新的最优模型/数据扩展-缩放分配策略。此外,还提出了一种方法,使用给定的计算预算来预测近似的batch-size和learning-rate。进一步得出结论,Scaling Laws与数据质量有关,这可能是不同工作中不同扩展行为的原因。在Scaling Laws的指导下,使用最佳超参数进行预训练,并进行全面评估。...
简介 后训练(post-training)已成为完整训练流程中的重要组成部分。相比于预训练,后训练需要的计算资源相对较少,但能够: 提高推理任务的准确性 使模型与社会价值观保持一致 适应用户偏好 OpenAI 的 o1 系列模型首次引入了通过增加思维链(Chain-of-Thought)推理过程长度来实现推理时间,扩展这种方法在数学、编程和科学推理等各种推理任务上取得了显著改进 研究界已探索多种方法来提高模型的推理能力:比如 基于过程的奖励模型 (Process-based Reward Models) 强化学习 (Reinforcement Learning), 代表工作:InstructGPT, 以及 搜索算法( 蒙特卡洛树搜索(Monte Carlo Tree Search)、束搜索(Beam Search))。然而,这些方法尚未达到与 OpenAI o1 系列模型相当的通用推理性能。 DeepSeek-R1-Zero 本文首先探索使用纯强化学习(RL)来提高语言模型的推理能力,重点关注: 探索 LLM 在没有任何监督数据的情况下,通过纯 RL 过程的自我进化来发展推理能力...
简介 24年12月,研究团队开发了 DeepSeek-V3,这是一个基于 MoE 架构的大模型,总参数量达到 671B,其中每个 token 会激活 37B 个参数。 基于提升性能和降低成本的双重目标,在架构设计方面,DeepSeek-V3 采用了 MLA 来确保推理效率,并使用 DeepSeekMoE 来实现经济高效的训练。这两种架构在 DeepSeek-V2 中已经得到验证,证实了它们能够在保持模型性能的同时实现高效的训练和推理。 除了延续这些基础架构外,研究团队还引入了两项创新策略来进一步提升模型性能。 首先,DeepSeek-V3 首创了 无辅助损失的负载均衡 策略(auxiliary-loss-free strategy for load balancing),有效降低了负载均衡对模型性能的负面影响。另外,DeepSeek-V3 采用了 多 token 预测训练目标, 这种方法在评估基准测试中展现出了显著的性能提升。 为了提高训练效率,该研究采用了 FP8 混合精度训练技术...
在电商搜索中,query推荐有很多种产品形态,不同的产品形态也扮演着不同的角色,常见的有query suggestion(SUG)、猜你想搜(搜索发现、大家都在搜)、细选(锦囊)、搜索底纹、搜索PUSH、搜索“风向标”(点击回退query推荐)等。以淘宝当前版本的产品形态为例,有: 上述每个方向都值得单独介绍,而本文则先整体从query推荐角度,放在一起介绍,方便横向对比各个场景的目标和方法上的异同之处。而以经典的分类方式展开,可以将query 推荐策略放在用户搜索前、搜索中、浏览中、搜索后(本章不涉及讨论)等各个状态阶段来进行比较: 目标 以上引出了搜索query推荐的两大目标: 搜索增长,目标提升提升渗透率,将用户引导到成交效率更高的搜索场景,提升搜索活跃度,常见的产品形态有:底纹、qu...
1. 搜索引擎概述 1.1 推荐和搜索比较 推荐系统和搜索应该是机器学习乃至深度学习在工业界落地应用最多也最容易变现的场景。而无论是搜索还是推荐,本质其实都是匹配,搜索的本质是给定query,匹配doc;推荐的本质是给定user,推荐item。 对于搜索来说,搜索引擎的本质是对于用户给定query,搜索引擎通过querydoc的match匹配,返回用户最可能点击的文档的过程。从某种意义上来说,query代表的是一类用户,就是对于给定的query,搜索引擎要解决的就是query和doc的match,如图1.1所示。 对于推荐来说,推荐系统就是系统根据用户的属性(如性别、年龄、学历等),用户在系统里过去的行为(例如浏览、点击、搜索、收藏等),以及当前上下文环境(如网络、手机设备等),从而给用户推...
精排是用pointwise方式对商品的CTR/CVR进行预估,旨在建模s=f(user, query, item, context) ,对候选商品进行打分。但有些情况下仅有精排还存在不足之处,如: 1、即使对单个商品进行打分,资源效率限制下,上千候选的精排有时也无法落地更加复杂的模型; 2、pointwise模式的打分无法从候选列表整体或上下文实时反馈角度出发进行排序; 3、直接使用精排分排序无法满足特殊整体性排序需求,如常见的搜索结果的多样性(如价格、地域、品牌、风格等属性的打散)、发现性、异质内容的混排调控(如商品、内容、广告等物料的混排)、流量调控等。 相应地,从以上三点出发,本文从“更加精准打分”、“关注序和上下文”、“特殊需求重排”三方面梳理重排的一般方法: 更加精准打分 重排的第...
讨论一下推荐系统三板斧:数据、特征和模型,因为搜索的排序套路和推荐十分类似,除了多了query维度特征,对相关性有一定的要求,其他很大程度上思想一致。 这里先行引用一个比较形象的推荐系统优化流程: 1. 明确业务目标 1. 将业务目标转化为机器学习可优化目标 1. 样本收集 1. 特征工程 1. 模型选择和训练 1. 离线评测验证 1. 在线AB验证 1. 通过离线验证和在线AB的结果反馈到2,形成一个增强回路慢慢起飞。 而在一般情况下,各个环节的贡献占比:样本特征工程模型。另外如果离线验证集85分,线上很多时候也会略低,各种原因也不胜枚举:特征延迟、特征不一致、甚至在样本落盘时的数据丢失等等。 本篇先行介绍上述过程特征工程的一般方法,包括特征设计、清洗、变换以及特征选择,并在最后讨论深度学...
CTR预测问题简介 点击率(Click Through Rate, CTR)预估是程序化广告里的一个最基本而又最重要的问题。比如在竞价广告里,排序的依据就是 𝑐𝑡𝑟×𝑏𝑖𝑑 。通过选择 𝑐𝑡𝑟×𝑏𝑖𝑑 最大的广告就能最大化平台的eCPM。从机器学习的角度来说这是一个普通的回归问题,但是它的特殊性在于训练数据只有0/1的值——因为我们没有办法给同一个用户展示同一个广告1万次,然后统计点击的次数来估计真实的点击率。另外有人也许会有这样的看法:对于某一个特定的曝光,某个用户是否点击某个广告是确定的,第一次不点,第二次也不会点,因此点击率是一个0/1的固定值而不是一个01之间的概率值。这个说法有一些道理,原因是第二次实验和第一次使用不是独立同分布的。“真正”的做法是第二次做实验前要擦除用户第一次实验...
FM:Factorization Machines, 2010 —— 隐向量学习提升模型表达 参考 Untitled 优势: 可以有效处理稀疏场景下的特征学习 具有线性时间复杂度 对训练集中未出现的交叉特征信息也可进行泛化 不足: 2way的FM仅枚举了所有特征的二阶交叉信息,没有考虑高阶特征的信息 2way的FM仅枚举了所有特征的二阶交叉信息,没有考虑高阶特征的信息 FFM(Fieldaware Factorization Machine)是Yuchin Juan等人在2015年的比赛中提出的一种对FM改进算法,主要是引入了field概念,即认为每个feature对于不同field的交叉都有不同的特征表达。FFM相比于FM的计算时间复杂度更高,但同时也提高了本身模型的表达能力。FM也可以看...
PrefixTuning Paper: 2021.1 Optimizing Continuous Prompts for GenerationGithub:https://github.com/XiangLi1999/PrefixTuningPrompt: Continus Prefix PromptTask & Model:BART(Summarization), GPT2(Table2Text) 最早提出Prompt微调的论文之一,其实是可控文本生成领域的延伸,因此只针对摘要和Table2Text这两个生成任务进行了评估。 PrefixTuning可以理解是CTRL模型的连续化升级版,为了生成不同领域和话题的文本,CTRL是在预训练阶段在输入文本前加入了control code,例如好评...
背景 随着预训练语言模型进入LLM时代,其参数量愈发庞大。全量微调模型所有参数所需的显存早已水涨船高。 例如: 全参微调Qwen1.57BChat预估要2张80GB的A800,160GB显存 全参微调Qwen1.572BChat预估要20张80GB的A800,至少1600GB显存。 而且,通常不同的下游任务还需要LLM的全量参数,对于算法服务部署来说简直是个灾难 当然,一种折衷做法就是全量微调后把增量参数进行SVD分解保存,推理时再合并参数 为了寻求一个不更新全部参数的廉价微调方案,之前一些预训练语言模型的高效微调(Parameter Efficient finetuning, PEFT)工作,要么插入一些参数或学习外部模块来适应新的下游任务。 Adapter tuning Adapter ...