INCOMING TRANSMISSION

LATEST UPDATES
129. 滑动窗口最大值 题目 给你一个整数数组 nums ,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的最大值 。 示例 1: 输入:nums = [1,3,-1,-3,5,3,6,7], k = 3 输出:[3,3,5,5,6,7] 解释: 滑动窗口的位置 最大值 --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7 示例 2: 输入:nums = [1], k = 1 输出:[1] 提示: 1 <= nums.length...
基于文章 《Elucidating the Design Space of Diffusion-Based Generative Models》 来统一扩散模型框架 通用扩散模型框架推导 加噪公式 Flow Matching的一步加噪公式 \[\mathbf{x}_t=(1-t)\mathbf{x}_0+t\varepsilon\] 写成概率分布形式: \[p(\mathbf{x}_t|\mathbf{x}_0)=\mathcal{N}(\mathbf{x}_t;(1-t)\mathbf{x}_0,t^2\mathbf{I})\] Score Matching的一步加噪公式 \[\mathbf{x}_t=\mathbf{x}_0+\sigma_t\varepsilon \] 写成概率分布形式: \[p(\mathbf{x}_t|\mathbf{x}_0)=\mathcal{N}(\mathbf{x}_t;\mathbf{x}_0,\sigma_t^2\mathbf{I})\] DDPM/DDIM的一步加噪公式...
Normalizing flow(标准化流)是一类对概率分布进行建模的工具,它能完成简单的概率分布(例如高斯分布)和任意复杂分布之间的相互转换,经常被用于 data generation、density estimation、inpainting 等任务中,例如 Stability AI 提出的 Stable Diffusion 3 中用到的 rectified flow 就是 normalizing flow 的变体之一。 为了便于理解,在正式开始介绍之前先简要说明一下 normalizing flow 的做法。如上图所示,为了将一个高斯分布 \(z_0\) 转换为一个复杂的分布 \(z_K\) ,normalizing flow 会对初始的分布 \(z_0\) 进行多次可逆的变换,将其逐渐转换为 \(z_K\) 。由于每一次变换都是可逆的,从 \(z_K\) 出发也能得到高斯分布 \(z_0\) 。这样,我们就实现了复杂分布与高斯分布之间的互相转换,从而能从简单的高斯分布建立任意复杂分布。 对 diffusion models 比较熟悉的读者可能已经发现了,这个过程和...
背景 本文主要是《NICE: Nonlinear Independent Components Estimation》一文的介绍和实现。这篇文章也是glow这个模型的基础文章之一,可以说它就是glow的奠基石。 艰难的分布 众所周知,目前主流的生成模型包括VAE和GAN,但事实上除了这两个之外,还有基于flow的模型(flow可以直接翻译为“流”,它的概念我们后面再介绍)。事实上flow的历史和VAE、GAN它们一样悠久,但是flow却鲜为人知。在我看来,大概原因是flow找不到像GAN一样的诸如“造假者鉴别者”的直观解释吧,因为flow整体偏数学化,加上早期效果没有特别好但计算量又特别大,所以很难让人提起兴趣来。不过现在看来,OpenAI的这个好得让人惊叹的、基于flow的glow模型,估...
💡 原本随机采样的DDPM模型中,也隐含了一个确定性的采样过程DDIM,它的连续极限也是一个ODE。 细想上述过程,可以发现不管是“DDPM→DDIM”还是“SDE→ODE”,都是从随机采样模型过渡到确定性模型,而如果我们一开始的目标就是ODE,那么该过程未免显得有点“迂回”了。在本文中,笔者尝试给出ODE扩散模型的直接推导,并揭示了它与雅可比行列式、热传导方程等内容的联系。 Rectified Flow 理论推导 微分方程 像GAN这样的生成模型,它本质上是希望找到一个确定性变换,能将从简单分布(如标准正态分布)采样出来的随机变量,变换为特定数据分布的样本。flow模型也是生成模型之一,它的思路是反过来,先找到一个能将数据分布变换简单分布的可逆变换,再求解相应的逆变换来得到一个生成模型。 ...
1. 列表和元组总结 列表和元组都是一个可以放置任意数据类型的有序集合,他们有以下共同点 列表和元组中的元素可以任意,并且都可以嵌套。 列表和元组都支持索引,且都支持负数索引,1表示最后一个元素,2表示倒数第二个元素 列表和元组都支持切片操作 都支持in关键词 都可以使用.index()、.count()、sorted()和enumerate()等方法 两者之间的相互转换,list()和tuple() 但是他们也是有区别 列表是动态的,长度大小不固定,可以随意地增加、删减或者改变元素(mutable) 元组是静态的,长度大小不固定,无法增删改,想要对已有的元组做任何“改变”,就只能开辟一块内存,创建新的元组 2. 列表和元组存储方式的差异 由于列表是动态的;元组是静态的,不可变的。这样的差异...
生成器 什么是生成器? 通过列表生成式,我们可以直接创建一个列表,但是,受到内存限制,列表容量肯定是有限的,而且创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。 所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间,在Python中,这种一边循环一边计算的机制,称为生成器:generator 生成器是一个特殊的程序,可以被用作控制循环的迭代行为,python中生成器是迭代器的一种,使用yield返回值函数,每次调用yield会暂停,而可以使用next()函数和send()函数恢复生成器。 生成器类似于返回值为数组的一...
概念 可变对象与不可变对象的区别在于对象本身是否可变。 python内置的一些类型中 可变对象:list dict set 不可变对象:tuple string int float bool 举一个例子 [代码] 上面例子很直观地展现了,可变对象是可以直接被改变的,而不可变对象则不可以 地址问题 下面我们来看一下可变对象的内存地址变化 [代码] 我们可以看到,可变对象变化后,地址是没有改变的 如果两个变量同时指向一个地址 1.可变对象 [代码] 我们可以看到,改变a则b也跟着变,因为他们始终指向同一个地址 2.不可变对象 [代码] 我们可以看到,a改变后,它的地址也发生了变化,而b则维持原来的地址,原来地址中的内容也没有发生变化 作为函数参数 1.可变对象 [代码] 我们可以看到,可变对象作...
概述 python采用的是引用计数机制为主,标记清除和分代收集两种机制为辅的策略。 引用计数 Python语言默认采用的垃圾收集机制是『引用计数法 Reference Counting』,该算法最早George E. Collins在1960的时候首次提出,50年后的今天,该算法依然被很多编程语言使用。 『引用计数法』的原理是:每个对象维护一个ob_ref字段,用来记录该对象当前被引用的次数,每当新的引用指向该对象时,它的引用计数ob_ref加1,每当该对象的引用失效时计数ob_ref减1,一旦对象的引用计数为0,该对象立即被回收,对象占用的内存空间将被释放。 它的缺点是需要额外的空间维护引用计数,这个问题是其次的,不过最主要的问题是它不能解决对象的“循环引用”,因此,也有很多语言比如Jav...
进程 一个在内存中运行的应用程序。每个进程都有自己独立的一块内存空间,一个进程可以有多个线程,比如在Windows系统中,一个运行的xx.exe就是一个进程。 线程 进程中的一个执行任务(控制单元),负责当前进程中程序的执行。一个进程至少有一个线程,一个进程可以运行多个线程,多个线程可共享数据。 与进程不同的是同类的多个线程共享进程的堆和方法区资源,但每个线程有自己的程序计数器、虚拟机栈和本地方法栈,所以系统在产生一个线程,或是在各个线程之间作切换工作时,负担要比进程小得多,也正因为如此,线程也被称为轻量级进程。 Java 程序天生就是多线程程序,我们可以通过 JMX 来看一下一个普通的 Java 程序有哪些线程,代码如下。 [代码] 上述程序输出如下(输出内容可能不同,不用太纠结下面每个线...
Pycharm 的图形化界面虽然好用,但是在某些场景中,是无法使用的。而 Python 本身已经给我们提供了一个调试神器 pdb. 准备文件 在调试之前先将这两个文件准备好(做为演示用),并放在同级目录中。 utils.py [代码] pdb_demo.py [代码] 进入调试模式 主要有两种方法 做为脚本调用,方法很简单,就像正常执行python脚本一样,只是多加了m pdb [代码] 使用这个方式进入调试模式,会在脚本的第一行开始单步调试。 对于单文件的脚本并没有什么问题,如果是一个大型的项目,项目里有很多的文件,使用这种方式只能大大降低我们的效率。 一般情况下,都会直接在你需要的地方打一个断点,那如何打呢? 只需在你想要打断点的地方加上这两行。 [代码] 然后执行时,也不需要再指定m ...
通过继承创建的新类称为“子类”或“派生类”,被继承的类称为“基类”、“父类”或“超类”,继承的过程,就是从一般到特殊的过程。在某些 OOP 语言中,一个子类可以继承多个基类。但是一般情况下,一个子类只能有一个基类,要实现多重继承,可以通过多级继承来实现 python2中经典类和新式类的继承方式不同,经典类采用深度优先搜索的继承,新式类采用的是广度优先搜索的继承方式 python3中经典类和新式类的继承方式都采用的是都采用广度优先搜索的继承方式 [代码] [代码] 举个例子来说明:现有4个类,A,B,C,D类,D类继承于B类和C类,B类与C类继承于A类。class D(B,C) 实例化D类 深度优先 现在构造函数的继承情况为: 若D类有构造函数,则重写所有父类的继承 若D类没有构造函数,B类有...
1 2