INCOMING TRANSMISSION

LATEST UPDATES
SigLIP 概述 CLIP自提出以来在zero-shot分类、跨模态搜索、多模态对齐等多个领域得到广泛应用。得益于其令人惊叹的能力,激起了研究者广泛的关注和优化。 目前对CLIP的优化主要可以分为两大类: 其一是如何降低CLIP的训练成本; 其二是如何提升CLIP的performance。 对于第一类优化任务的常见思路有3种。 优化训练架构,如 LiT 通过freezen image encoder,单独训练text encoder来进行text 和image的对齐来加速训练; 减少训练token,如 FLIP 通过引入视觉mask,通过只计算非mask区域的视觉表征来实现加速(MAE中的思路) 优化目标函数,如 CatLIP 将caption转为class label,用分类任务来代替对比学习任务来实现加速。 对于第二类提升CLIP的performance最常用和有效的手段就是数据治理,即构建高质量、大规模、高多样性的图文数据,典型的工作如:DFN。 SigLIP这篇paper 提出用sigmoid...
BLIP 论文名称 :BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (ICML 2022) 论文地址: https://arxiv.org/pdf/2201.12086.pdf 代码地址: https://github.com/salesforce/BLIP 官方解读博客: https://blog.salesforceairesearch.com/blip-bootstrapping-language-image-pretraining/ 背景和动机 视觉语言训练 (Vision-Language Pre-training, VLP) 最近在各种多模态下游任务上取得了巨大的成功。然而,现有方法有两个主要限制: 模型层面: 大多数现有的预训练模型仅在基于理解的任务或者基于生成的任务方面表现出色,很少有可以兼顾的模型。比如,基于编码器的模型,像 CLIP,ALBEF 不能直接转移到文本生成任务...
CLIP算法原理 CLIP 不预先定义图像和文本标签类别,直接利用从互联网爬取的 400 million 个image-text pair 进行图文匹配任务的训练,并将其成功迁移应用于30个现存的计算机视觉分类。简单的说,CLIP 无需利用 ImageNet 的数据和标签进行训练,就可以达到 ResNet50 在 ImageNet数据集上有监督训练的结果,所以叫做 Zero-shot。 CLIP(contrastive language-image pre-training)主要的贡献就是 利用无监督的文本信息,作为监督信号来学习视觉特征 。 CLIP 作者先是回顾了并总结了和上述相关的两条表征学习路线: 构建image和text的联系,比如利用已有的image-text pair数据集,从text中学习image的表征; 获取更多的数据(不要求高质量,也不要求full...
简介 如果以概率的视角看待世界的生成模型。 在这样的世界观中,我们可以将任何类型的观察数据(例如 \(D\) )视为来自底层分布(例如 \( p_{data}\) )的有限样本集。 任何生成模型的目标都是在访问数据集 \(D\) 的情况下近似该数据分布。 如果我们能够学习到一个好的生成模型,我们可以将学习到的模型用于下游推理。 我们主要对数据分布的参数近似感兴趣,在一组有限的参数中,它总结了关于数据集 \(D\) 的所有信息。 与非参数模型相比,参数模型在处理大型数据集时能够更有效地扩展,但受限于可以表示的分布族。 在参数的设置中,我们可以将学习生成模型的任务视为在模型分布族中挑选参数,以最小化模型分布和数据分布之间的距离。 如上图,给定一个狗的图像数据集,我们的目标是学习模型族 \(M\) 中生成模型 θ 的参数,使得模型分布 \(p_θ\) 接近 \(p_{data}\) 上的数据分布。 在数学上,我们可以将我们的目标指定为以下优化问题: \[\mathop{min}\limits_{\theta\in M}d(p_\theta,p_{data})\] 其中, \(d()\)...
研究对象与基本设定 我们希望学习一个能够“生成数据”的概率模型。假设我们有一个数据集 \(D\) ,每个样本是 \(n\) 维二值向量: \(x \in \{0,1\}^n\) 我们的目标是用一个参数化分布 \(p_\theta(x)\) 去逼近真实数据分布 \(p_{\text{data}}(x)\) ,并最终能够: 密度估计 :给定 \(x\) 计算 \(p_\theta(x)\) 或 \(\log p_\theta(x)\) 采样生成 :从 \(p_\theta(x)\) 采样得到新的 \(x\) 表示:链式法则与自回归分解 链式法则分解联合分布 任意联合分布都可用概率链式法则分解为条件概率的乘积: \[p(x) = \prod_{i=1}^{n} p(x_i \mid x_1, x_2, \dots, x_{i-1}) = \prod_{i=1}^{n} p(x_i \mid x_{<i})\] 其中: \(x_{<i} = [x_1, x_2, \dots, x_{i-1}]\) ,这意味着:只要我们能为每个维度 \(i\) 学好一个条件分布 \(p(x_i \mid...
the machine predicts any parts of its input for any observed part 这是LeCun在AAAI 2020上对自监督学习的定义,再结合传统的自监督学习定义,可以总结如下两点特征: 通过“半自动”过程从数据本身获取“标签”; 从“其他部分”预测部分数据。 个人理解, 其实任意挖掘对象之间联系、探索不同对象共同本质的方法,都或多或少算是自监督学习的思想 。 自监督学习与无监督学习的区别主要在于,无监督学习专注于检测特定的数据模式,如聚类、社区发现或异常检测,而自监督学习的目标是恢复(recovering),仍处于监督学习的范式中。上图展示了三者之间的区别, 自监督中的“related information” 可以来自其他模态、输入的其他部分以及输入的不同形式。 Self-Supervised...
1.深度学习偏置的作用? 我们在学深度学习的时候,最早接触到的神经网络应该属于感知器(感知器本身就是一个很简单的神经网络,也许有人认为它不属于神经网络,当然认为它和神经网络长得像也行) 要想激活这个感知器,使得 y=1 ,就必须使 x_1w_1 + x_2w_2 +....+x_nw_n T ( T 为一个阈值),而 T 越大,想激活这个感知器的难度越大,人工选择一个阈值并不是一个好的方法,因为样本那么多,我不可能手动选择一个阈值,使得模型整体表现最佳,那么我们可以使得T变成可学习的,这样一来, T 会自动学习到一个数,使得模型的整体表现最佳。当把T移动到左边,它就成了偏置, x_1w_1 + x_2w_2 +....+x_nw_n T 0 xw +b 0 ,总之,偏置的大小控制着激活这个感...
如何计算RF 公式一:这个算法从top往下层层迭代直到追溯回input image,从而计算出RF。 [公式] 其中,RF是感受野。RF和RF有点像,N代表 neighbour,指的是第n层的 a feature在n1层的RF,记住N_RF只是一个中间变量,不要和RF混淆。 stride是步长,ksize是卷积核大小。
在电商搜索中,query推荐有很多种产品形态,不同的产品形态也扮演着不同的角色,常见的有query suggestion(SUG)、猜你想搜(搜索发现、大家都在搜)、细选(锦囊)、搜索底纹、搜索PUSH、搜索“风向标”(点击回退query推荐)等。以淘宝当前版本的产品形态为例,有: 上述每个方向都值得单独介绍,而本文则先整体从query推荐角度,放在一起介绍,方便横向对比各个场景的目标和方法上的异同之处。而以经典的分类方式展开,可以将query 推荐策略放在用户搜索前、搜索中、浏览中、搜索后(本章不涉及讨论)等各个状态阶段来进行比较: 目标 以上引出了搜索query推荐的两大目标: 搜索增长,目标提升提升渗透率,将用户引导到成交效率更高的搜索场景,提升搜索活跃度,常见的产品形态有:底纹、qu...
1. 搜索引擎概述 1.1 推荐和搜索比较 推荐系统和搜索应该是机器学习乃至深度学习在工业界落地应用最多也最容易变现的场景。而无论是搜索还是推荐,本质其实都是匹配,搜索的本质是给定query,匹配doc;推荐的本质是给定user,推荐item。 对于搜索来说,搜索引擎的本质是对于用户给定query,搜索引擎通过querydoc的match匹配,返回用户最可能点击的文档的过程。从某种意义上来说,query代表的是一类用户,就是对于给定的query,搜索引擎要解决的就是query和doc的match,如图1.1所示。 对于推荐来说,推荐系统就是系统根据用户的属性(如性别、年龄、学历等),用户在系统里过去的行为(例如浏览、点击、搜索、收藏等),以及当前上下文环境(如网络、手机设备等),从而给用户推...
精排是用pointwise方式对商品的CTR/CVR进行预估,旨在建模s=f(user, query, item, context) ,对候选商品进行打分。但有些情况下仅有精排还存在不足之处,如: 1、即使对单个商品进行打分,资源效率限制下,上千候选的精排有时也无法落地更加复杂的模型; 2、pointwise模式的打分无法从候选列表整体或上下文实时反馈角度出发进行排序; 3、直接使用精排分排序无法满足特殊整体性排序需求,如常见的搜索结果的多样性(如价格、地域、品牌、风格等属性的打散)、发现性、异质内容的混排调控(如商品、内容、广告等物料的混排)、流量调控等。 相应地,从以上三点出发,本文从“更加精准打分”、“关注序和上下文”、“特殊需求重排”三方面梳理重排的一般方法: 更加精准打分 重排的第...
讨论一下推荐系统三板斧:数据、特征和模型,因为搜索的排序套路和推荐十分类似,除了多了query维度特征,对相关性有一定的要求,其他很大程度上思想一致。 这里先行引用一个比较形象的推荐系统优化流程: 1. 明确业务目标 1. 将业务目标转化为机器学习可优化目标 1. 样本收集 1. 特征工程 1. 模型选择和训练 1. 离线评测验证 1. 在线AB验证 1. 通过离线验证和在线AB的结果反馈到2,形成一个增强回路慢慢起飞。 而在一般情况下,各个环节的贡献占比:样本特征工程模型。另外如果离线验证集85分,线上很多时候也会略低,各种原因也不胜枚举:特征延迟、特征不一致、甚至在样本落盘时的数据丢失等等。 本篇先行介绍上述过程特征工程的一般方法,包括特征设计、清洗、变换以及特征选择,并在最后讨论深度学...
1 2