INCOMING TRANSMISSION

LATEST UPDATES
76. 最小覆盖子串 题目 给定两个字符串 s 和 t ,长度分别是 m 和 n ,返回 s 中的 最短窗口 子串 ,使得该子串包含 t 中的每一个字符( 包括重复字符 )。如果没有这样的子串,返回空字符串 "" 。 测试用例保证答案唯一。 示例 1: 输入:s = "ADOBECODEBANC", t = "ABC" 输出:"BANC" 解释:最小覆盖子串 "BANC" 包含来自字符串 t 的 'A'、'B' 和 'C'。 示例 2: 输入:s = "a", t = "a" 输出:"a" 解释:整个字符串 s 是最小覆盖子串。 示例 3: 输入: s = "a", t = "aa" 输出: "" 解释: t 中两个字符 'a' 均应包含在 s 的子串中, 因此没有符合条件的子字符串,返回空字符串。 提示: m == s.length n == t.length 1 <= m, n <= 10 5 s 和 t 由英文字母组成 题解 这是一个经典的 滑动窗口 (Sliding Window) 问题 我们需要维护一个动态的窗口 [left, right] : 右移扩大 :不断移动...
空洞卷积 Dilated/Atrous Convolution 或者是 Convolution with holes 从字面上就很好理解,是在标准的 convolution map 里注入空洞,以此来增加 reception field。相比原来的正常convolution,dilated convolution 多了一个 hyperparameter 称之为 dilation rate 指的是kernel的间隔数量(e.g. 正常的 convolution 是 dilatation rate 1)。 一个简单的例子 一维情况下空洞卷积的公式如下 [Formula] 不过光理解他的工作原理还是...
PA Pixel Accuracy(PA,像素精度):这是最简单的度量,为标记正确的像素占总像素的比例。 [公式] 图像中共有k+1(包含背景)类, p_{ii} 表示将第i类分成第 i 类的像素数量(正确分类的像素数量), p_{ij} 表示将第 i 类分成第 j 类的像素数量(所有像素数量) 因此该比值表示正确分类的像素数量占总像素数量的比例。 优点:简单 缺点:如果图像中大面积是背景,而目标较小,即使将整个图片预测为背景,也会有很高的PA得分,因此该指标不适用于评价以小目标为主的图像分割效果。 MPA Mean Pixel Accuracy(MPA,均像素精度):是PA的一种简单提升,计算每个类内被正确分类像素数的比例,之后求所有类的平均。 [公式] MIoU Mean Interse...
1. 列表和元组总结 列表和元组都是一个可以放置任意数据类型的有序集合,他们有以下共同点 列表和元组中的元素可以任意,并且都可以嵌套。 列表和元组都支持索引,且都支持负数索引,1表示最后一个元素,2表示倒数第二个元素 列表和元组都支持切片操作 都支持in关键词 都可以使用.index()、.count()、sorted()和enumerate()等方法 两者之间的相互转换,list()和tuple() 但是他们也是有区别 列表是动态的,长度大小不固定,可以随意地增加、删减或者改变元素(mutable) 元组是静态的,长度大小不固定,无法增删改,想要对已有的元组做任何“改变”,就只能开辟一块内存,创建新的元组 2. 列表和元组存储方式的差异 由于列表是动态的;元组是静态的,不可变的。这样的差异...
生成器 什么是生成器? 通过列表生成式,我们可以直接创建一个列表,但是,受到内存限制,列表容量肯定是有限的,而且创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。 所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间,在Python中,这种一边循环一边计算的机制,称为生成器:generator 生成器是一个特殊的程序,可以被用作控制循环的迭代行为,python中生成器是迭代器的一种,使用yield返回值函数,每次调用yield会暂停,而可以使用next()函数和send()函数恢复生成器。 生成器类似于返回值为数组的一...
概念 可变对象与不可变对象的区别在于对象本身是否可变。 python内置的一些类型中 可变对象:list dict set 不可变对象:tuple string int float bool 举一个例子 [代码] 上面例子很直观地展现了,可变对象是可以直接被改变的,而不可变对象则不可以 地址问题 下面我们来看一下可变对象的内存地址变化 [代码] 我们可以看到,可变对象变化后,地址是没有改变的 如果两个变量同时指向一个地址 1.可变对象 [代码] 我们可以看到,改变a则b也跟着变,因为他们始终指向同一个地址 2.不可变对象 [代码] 我们可以看到,a改变后,它的地址也发生了变化,而b则维持原来的地址,原来地址中的内容也没有发生变化 作为函数参数 1.可变对象 [代码] 我们可以看到,可变对象作...
概述 python采用的是引用计数机制为主,标记清除和分代收集两种机制为辅的策略。 引用计数 Python语言默认采用的垃圾收集机制是『引用计数法 Reference Counting』,该算法最早George E. Collins在1960的时候首次提出,50年后的今天,该算法依然被很多编程语言使用。 『引用计数法』的原理是:每个对象维护一个ob_ref字段,用来记录该对象当前被引用的次数,每当新的引用指向该对象时,它的引用计数ob_ref加1,每当该对象的引用失效时计数ob_ref减1,一旦对象的引用计数为0,该对象立即被回收,对象占用的内存空间将被释放。 它的缺点是需要额外的空间维护引用计数,这个问题是其次的,不过最主要的问题是它不能解决对象的“循环引用”,因此,也有很多语言比如Jav...
Pycharm 的图形化界面虽然好用,但是在某些场景中,是无法使用的。而 Python 本身已经给我们提供了一个调试神器 pdb. 准备文件 在调试之前先将这两个文件准备好(做为演示用),并放在同级目录中。 utils.py [代码] pdb_demo.py [代码] 进入调试模式 主要有两种方法 做为脚本调用,方法很简单,就像正常执行python脚本一样,只是多加了m pdb [代码] 使用这个方式进入调试模式,会在脚本的第一行开始单步调试。 对于单文件的脚本并没有什么问题,如果是一个大型的项目,项目里有很多的文件,使用这种方式只能大大降低我们的效率。 一般情况下,都会直接在你需要的地方打一个断点,那如何打呢? 只需在你想要打断点的地方加上这两行。 [代码] 然后执行时,也不需要再指定m ...
通过继承创建的新类称为“子类”或“派生类”,被继承的类称为“基类”、“父类”或“超类”,继承的过程,就是从一般到特殊的过程。在某些 OOP 语言中,一个子类可以继承多个基类。但是一般情况下,一个子类只能有一个基类,要实现多重继承,可以通过多级继承来实现 python2中经典类和新式类的继承方式不同,经典类采用深度优先搜索的继承,新式类采用的是广度优先搜索的继承方式 python3中经典类和新式类的继承方式都采用的是都采用广度优先搜索的继承方式 [代码] [代码] 举个例子来说明:现有4个类,A,B,C,D类,D类继承于B类和C类,B类与C类继承于A类。class D(B,C) 实例化D类 深度优先 现在构造函数的继承情况为: 若D类有构造函数,则重写所有父类的继承 若D类没有构造函数,B类有...
Python程序中存储的所有数据都是对象,每一个对象有一个身份,一个类型和一个值。 看变量的实际作用,执行a = 8 这行代码时,就会创建一个值为8的int对象。 变量名是对这个"一个值为8的int对象"的引用。(也可以简称a绑定到8这个对象) 1、可以通过id()来取得对象的身份 这个内置函数,它的参数是a这个变量名,这个函数返回的值 是这个变量a引用的那个"一个值为8的int对象"的内存地址。 [代码] 2、可以通过type()来取得a引用对象的数据类型 [代码] 3、对象的值 当变量出现在表达式中,它会被它引用的对象的值替代。 总结:类型是属于对象,而不是变量。变量只是对对象的一个引用。 对象有可变对象和不可变对象之分。 Python函数传递参数到底是传值还是引用? 传值、引用这个是c...
Segment Anything Segment Anything(SA)项目:一个用于图像分割的新任务、新模型和新数据集 通过FM(基础模型)+prompt解决了CV中难度较大的分割任务,给计算机视觉实现基础模型+提示学习+指令学习提供了一种思路 关键:加大模型容量(构造海量的训练数据,或者构造合适的自监督任务来预训练) Segment Anything Task SAM的一部分灵感是来源于NLP中的基座模型(Foundation Model),Foundation Model是OpenAI提出的一个概念,它指的是在超大量数据集上预训练过的大模型(如GPT系列、BERT),这些模型具有非常强大的 zeroshot 和 fewshot能力,结合prompt engineering和fine ...
CVPR2017 算法 Global Convolutional Network(GCN),江湖人送外号“Large Kernel”。 Motivation GCN 主要将 Semantic Segmentation分解为:Classification 和 Localization两个问题。但是,这两个任务本质对特征的需求是矛盾的,Classification需要特征对多种Transformation具有不变性,而 Localization需要对 Transformation比较敏感。但是,普通的 Segmentation Model大多针对 Localization Issue设计,正如图(b)所示,而这不利于 Classification。 所以,为了兼顾这两个 Task,本文提出了两个...